916 resultados para wound dehiscence
Resumo:
BACKGROUND: Low tissue oxygen tension is an important factor leading to the development of wound dehiscence and anastomotic leakage after colon surgery. We tested whether supplemental fluid and supplemental oxygen can increase tissue oxygen tension in healthy and injured, perianastomotic, and anastomotic colon in an acutely instrumented pig model of anastomosis surgery. METHODS: Sixteen Swiss Landrace pigs were anesthetized (isoflurane 0.8%-1%) and their lungs ventilated. The animals were randomly assigned to low fluid treatment ("low" group, 3 mL x kg(-1) x h(-1) lactated Ringer's solution) or high fluid treatment ("high" group, 10 mL/kg bolus, 18 mL x kg(-1) x h(-1) lactated Ringer's solution) during colon anastomosis surgery and a subsequent measurement period (4 h). Two-and-half hours after surgery, tissue oxygen tension was recorded for 30 min during ventilation with 30% oxygen. Three hours after surgery, the animals' lungs were ventilated with 100% oxygen for 60 min. Tissue oxygen tension was recorded in the last 30 min. Tissue oxygen tension was measured with polarographic Clark-type electrodes, positioned in healthy colonic wall, close (2 cm) to the anastomosis, and in the anastomosis. RESULTS: In every group, tissue oxygen tension during ventilation with 100% oxygen was approximately twice as high as during ventilation with 30% oxygen, a statistically significant result. High or low volume crystalloid fluid treatment had no effect on colon tissue oxygen tension. CONCLUSIONS: Supplemental oxygen, but not supplemental crystalloid fluid, increased tissue oxygen tension in healthy, perianastomotic, and anastomotic colon tissue.
Resumo:
Complications and failures after microvascular free tissue transfer for lower extremity reconstruction have a negative impact on postoperative course and final outcome. Therefore, a 10-year analysis on lower extremity reconstruction with free flaps was performed with a special emphasis on patient co-morbidities such as cardiovascular diseases, diabetes mellitus, body mass index and history of smoking, in order to identify potential risk factors. Complications such as haematoma, seroma, infection, wound dehiscence, as well as partial flap loss, postoperative thrombosis of the anastomosis and eventual total flap loss were gathered from the medical records. Limb salvage was 100%, however 40% suffered from complications ranging from minor wound dehiscence to total flap loss. None of the above-mentioned potential risk factors was associated with an increased rate of complications. However, in flaps that required revision for thrombosis, the age of the patients was significantly higher in the group of flaps that eventually failed when compared to flaps that were salvaged. In conclusion, lower extremity reconstruction with microvascular free tissue transfer is a safe and reliable procedure with a high success rate, however partial flap loss remains an important issue. Increased age was the only factor identified with an increased risk for subsequent flap loss in cases that were revised for thrombosis.
Resumo:
BACKGROUND In Chopart-level amputations the heel often deviates into equinus and varus when, due to the lack of healthy anterior soft tissue, rebalancing tendon transfers to the talar head are not possible. Consequently, anterior and lateral wound dehiscence and ulceration may occur requiring higher-level amputation to achieve wound closure, with considerable loss of function for the patients. METHODS Twenty-four consecutive patients (15 diabetes, 6 trauma, and 3 tumor) had Chopart's amputation and simultaneous or delayed additional ankle dorsiflexion arthrodesis to allow for tension-free wound closure or soft tissue reconstruction, or to treat secondary recurrent ulcerations. Percutaneous Achilles tendon lengthening and subtalar arthrodesis were added as needed. Wound healing problems, time to fusion and full weight-bearing in the prosthesis, complications in the prosthesis, and the ambulatory status were assessed. Satisfaction and function were evaluated by the AmpuPro score and the validated Prosthesis Evaluation Questionnaire scale. RESULTS Five patients had successful soft tissue healing and fusions but died of their underlying disease 2 to 46 months after the operation. Two diabetic patients required a transtibial amputation. The other 17 patients were followed for 27 months (range, 13-63). The average age of the 4 women and 13 men was 53.9 years (range, 16-87). Postoperative complications included minor wound healing problems in 8 patients, wound breakdown requiring revision in 4, phantom pain in 3, residual equinus in 1, and adjacent scar carcinoma in 1 patient. The time to full weight-bearing in the prosthesis ranged from 6 to 24 weeks (mean 10). The mean AmpuPro score was 107 points (of 120), and the mean Prosthesis Evaluation Questionnaire scale was 147 points (of 200). No complications occurred with the prosthesis. Twelve patients lost 1 to 2 mobility classes (mean 0.9). The arthrodeses all healed within 2.5 months (range, 1.5 to 5 months). CONCLUSION Adding an ankle arthrodesis to a Chopart's amputation either immediately or in a delayed fashion to treat anterior soft tissue complications was a successful salvage in most patients at this amputation level. It enabled the patients to preserve the advantages of a full-length limb with terminal weight-bearing. LEVEL OF EVIDENCE Level IV, retrospective case series.
Resumo:
Introdução: Pacientes com mielomeningocele apresentam elevada mortalidade e desenvolvem déficits neurológicos que ocorrem, primariamente, pelo desenvolvimento anormal da medula e de raízes nervosas e, secundariamente, por complicações adquiridas no período pós-natal. O desafio no cuidado desses pacientes é o reconhecimento precoce dos recém-nascidos de risco para evolução desfavorável a fim de estabelecer estratégias terapêuticas individualizadas. Objetivo: Este estudo tem como objetivo identificar marcadores prognósticos de curto prazo para recém-nascidos com mielomeningocele. As características anatômicas do defeito medular e da sua correção neurocirúrgica foram analisadas para esta finalidade. Métodos: Foi realizado um estudo de coorte retrospectiva com 70 pacientes com mielomeningocele em topografia torácica, lombar ou sacral nascidos entre janeiro de 2007 a dezembro de 2013 no Centro Neonatal do Instituto da Criança do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo. Pacientes com infecção congênita, anomalias cromossômicas e outras malformações maiores não relacionadas à mielomeningocele foram excluídos da análise. As características anatômicas da mielomeningocele e a sua correção neurocirúrgica foram analisadas quanto aos seguintes desfechos: reanimação neonatal, tempo de internação, necessidade de derivação ventricular, deiscência da ferida operatória, infecção da ferida operatória, infecção do sistema nervoso central e sepse. Para a análise bivariada dos desfechos qualitativos com os fatores de interesse foram empregados testes do qui-quadrado e exato de Fisher. Para a análise do desfecho quantitativo, tempo de internação hospitalar, foram empregados testes de Mann-Whitney. Foram estimados os riscos relativos e os respectivos intervalos com 95% de confiança. Foram desenvolvidos modelos de regressão linear múltipla para os desfechos quantitativos e regressão de Poisson para os desfechos qualitativos. Resultados: Durante o período do estudo 12.559 recém-nascidos foram admitidos no Centro Neonatal do Instituto da Criança do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo. Oitenta pacientes foram diagnosticados com mielomeningocele, com incidência de 6,4 casos para cada 1.000 nascidos vivos. Dez pacientes foram excluídos da análise devido à mielomeningocele em topografia cervical (n = 1), à cardiopatia congênita (n = 4), à trissomia do cromossomo 13 (n = 1), à onfalocele (n = 3) e à encefalocele (n = 1). Ocorreram três óbitos (4,28%). Mielomeningocele extensa foi associada a infecção do sistema nervoso central, a complicação de ferida operatória e a maior tempo de internação hospitalar. Os pacientes com mielomeningocele em topografia torácica apresentaram tempo de internação, em média, 39 dias maior que aqueles com defeito em topografia lombar ou sacral. Houve maior necessidade de reanimação em sala de parto entre os pacientes com macrocrania ao nascer. A correção cirúrgica realizada após 48 horas de vida aumentou em 5,7 vezes o risco de infecção do sistema nervoso central. Entre os pacientes operados nas primeiras 48 horas de vida não foi observado benefício adicional na correção cirúrgica realizada em \"tempo zero\". A ausência de hidrocefalia antenatal foi um marcador de bom prognóstico. Nestes pacientes, a combinação dos desfechos necessidade de derivação ventricular, complicações infecciosas, complicações de ferida operatória e reanimação em sala de parto foi 70% menos frequente. Conclusão: Este estudo permitiu identificar marcadores prognósticos de curto prazo em recém-nascidos com mielomeningocele. Os defeitos medulares extensos e a correção cirúrgica após 48 horas de vida influenciaram negativamente na evolução de curto prazo. As lesões extensas foram associadas a maiores taxas de infecção do sistema nervoso central, a complicações de ferida operatória e a internação hospitalar prolongada. A correção cirúrgica realizada após 48 horas de vida aumentou significativamente a ocorrência de infecção do sistema nervoso central. Ausência de hidrocefalia antenatal foi associada a menor número de complicações nos primeiros dias de vida
Resumo:
A 14-year-old castrated male Rhodesian Ridgeback was presented with a history of sneezing and epistaxis. Diagnostic procedures included physical examination, regional and thoracic radiography, computed tomography and histological examination of an incisional biopsy. A multilobular osteochondrosarcoma of the hard palate with pulmonary metastases was diagnosed. Surgical resection of the primary tumour was achieved with clean margins and the defect was repaired using bilateral mucosal transposition flaps from the lips. Wound dehiscence and oesophageal stricture were postoperative complications, but these resolved with treatment. A long-term survival time of 14 months resulted, with good quality of life and function during this time.
Resumo:
Introduction. Routine use of nasogastric tubes (NGT) after abdominal operations is intended to hasten the return of bowel function, diminish the risk of anastomotic leakage and prevent pulmonary complications. The aim of our study was to prospectively assess the tolerability and the safety of the non use of NGT after elective colorectal open operations. Patients and methods. Between March 2009 and December 2010, 110 consecutive patients underwent colo-rectal elective open surgery for neoplasm without nasogastric decompression. We analyzed the incidence of nausea and vomiting, the pulmonary complications, the return of bowel function the deep wound breakdown (fascial dehiscence) and the anastomotic leakage. Results. Only 15 patients (13,6%) reported nausea without vomiting immediately after surgery and 9 cases of vomiting were observed (8%), requiring the insertion of the NGT (nasogastric tube) in 5 (4,5%). A total of 105 patients (96,3%) were NGT free. No deep wound dehiscence was observed and only one real pneumonia occurred. Anastomotic dehiscence occured in 4 patients (3,6%) and a second surgical procedure was needed in three cases. The return of bowel function, except in the last four patients, occurred in 3,8 days average (range 2-7 days). Conclusion. We confirm the uselessness of the NGT in the framework of fast track program adopted in elective open colo-rectal surgery.
Resumo:
Objective: The purpose of this study was to investigate the periodontal healing pattern of dehiscence-type defects following different chemical root conditioning modalities. Materials and methods: Buccal osseous dehiscence defects were created on six teeth of seven dogs. After dental plaque accumulation, defects were treated with sterile saline solution (control group) or one chemical conditioning modality: citric acid (CA group), ethylenediaminetetraacetic acid (EDTA group), tetracycline (TTC group), citric acid + tetracycline (CA + TTC group), or tetracycline + citric acid (TTC + CA group). After 3 months of healing, clinical parameters were evaluated, and the animals were killed. Histological sections were processed, and a computer-assisted histometric analysis was used to evaluate the formation of new cementum, new bone, and epithelial apical migration. Results: All treatments yielded significant improvements in terms of probing depth decrease and clinical attachment level gain compared to baseline values; however, without significant differences among the groups (p > 0.05; one-way ANOVA). The highest amount of new cementum was noted in the EDTA group (3.72 ± 0.83 mm, 77.6 %), while the lowest amount of new bone was observed in the TTC group (0.7 ± 0.94 mm, 14.3 %). However, no statistically significant differences could be observed among the groups regarding epithelial apical migration, new cementum, and alveolar bone formation (p > 0.05). Conclusion: Chemical root surface conditioning did not promote any significant improvement in periodontal healing pattern of dehiscence-type defects in dogs. Clinical Relevance: Chemical root surface conditioning after surgical debridement did not promote positive or negative effects on periodontal healing pattern of dehiscence-type defects. © 2012 Springer-Verlag Berlin Heidelberg.
Resumo:
It has previously been found that complexes comprised of vitronectin and growth factors (VN:GF) enhance keratinocyte protein synthesis and migration. More specifically, these complexes have been shown to significantly enhance the migration of dermal keratinocytes derived from human skin. In view of this, it was thought that these complexes may hold potential as a novel therapy for healing chronic wounds. However, there was no evidence indicating that the VN:GF complexes would retain their effect on keratinocytes in the presence of chronic wound fluid. The studies in this thesis demonstrate for the first time that the VN:GF complexes not only stimulate proliferation and migration of keratinocytes, but also these effects are maintained in the presence of chronic wound fluid in a 2-dimensional (2-D) cell culture model. Whilst the 2-D culture system provided insights into how the cells might respond to the VN:GF complexes, this investigative approach is not ideal as skin is a 3-dimensional (3-D) tissue. In view of this, a 3-D human skin equivalent (HSE) model, which reflects more closely the in vivo environment, was used to test the VN:GF complexes on epidermopoiesis. These studies revealed that the VN:GF complexes enable keratinocytes to migrate, proliferate and differentiate on a de-epidermalised dermis (DED), ultimately forming a fully stratified epidermis. In addition, fibroblasts were seeded on DED and shown to migrate into the DED in the presence of the VN:GF complexes and hyaluronic acid, another important biological factor in the wound healing cascade. This HSE model was then further developed to enable studies examining the potential of the VN:GF complexes in epidermal wound healing. Specifically, a reproducible partial-thickness HSE wound model was created in fully-defined media and monitored as it healed. In this situation, the VN:GF complexes were shown to significantly enhance keratinocyte migration and proliferation, as well as differentiation. This model was also subsequently utilized to assess the wound healing potential of a synthetic fibrin-like gel that had previously been demonstrated to bind growth factors. Of note, keratinocyte re-epitheliasation was shown to be markedly improved in the presence of this 3-D matrix, highlighting its future potential for use as a delivery vehicle for the VN:GF complexes. Furthermore, this synthetic fibrin-like gel was injected into a 4 mm diameter full-thickness wound created in the HSE, both keratinocytes and fibroblasts were shown to migrate into this gel, as revealed by immunofluorescence. Interestingly, keratinocyte migration into this matrix was found to be dependent upon the presence of the fibroblasts. Taken together, these data indicate that reproducible wounds, as created in the HSEs, provide a relevant ex vivo tool to assess potential wound healing therapies. Moreover, the models will decrease our reliance on animals for scientific experimentation. Additionally, it is clear that these models will significantly assist in the development of novel treatments, such as the VN:GF complexes and the synthetic fibrin-like gel described herein, ultimately facilitating their clinical trial in the treatment of chronic wounds.
Resumo:
Successful repair of wounds and tissues remains a major healthcare and biomedical challenge in the 21st Century. In particular, chronic wounds often lead to loss of functional ability, increased pain and decreased quality of life, and can be a burden on carers and health-system resources. Advanced healing therapies employing biological dressings, skin substitutes, growth factor-based therapies and synthetic a cellular matrices, all of which aim to correct irregular and dysfunctional cellular pathways present in chronic wounds, are becoming more popular. This review focuses on recent advances in biologically inspired devices for would healing and includes a commentary on the challenges facing the regulatory governance of such products.
Resumo:
Background: Topical administration of growth factors (GFs) has displayed some potential in wound healing, but variable efficacy, high doses and costs have hampered their implementation. Moreover, this approach ignores the fact that wound repair is driven by interactions between multiple GFs and extracellular matrix (ECM) proteins. The Problem: Deep dermal partial thickness burn (DDPTB) injuries are the most common burn presentation to pediatric hospitals and also represent the most difficult burn injury to manage clinically. DDPTB often repair with a hypertrophic scar. Wounds that close rapidly exhibit reduced scarring. Thus treatments that shorten the time taken to close DDTPB’s may coincidently reduce scarring. Basic/Clinical Science Advances: We have observed that multi-protein complexes comprised of IGF and IGF-binding proteins bound to the ECM protein vitronectin (VN) significantly enhance cellular functions relevant to wound repair in human skin keratinocytes. These responses require activation of both the IGF-1R and the VN-binding αv integrins. We have recently evaluated the wound healing potential of these GF:VN complexes in a porcine model of DDTPB injury. Clinical Care Relevance: This pilot study demonstrates that GF:VN complexes hold promise as a wound healing therapy. Enhanced healing responses were observed after treatment with nanogram doses of the GF:VN complexes in vitro and in vivo. Critically healing was achieved using substantially less GF than studies in which GFs alone have been used. Conclusion: These data suggest that coupling GFs to ECM proteins, such as VN, may ultimately prove to be an improved technique for the delivery of novel GF-based wound therapies.
Resumo:
The use of ultra-thin films as dressings for cutaneous wounds could prove advantageous in terms of better conformity to wound topography and improved vapour transmission. For this purpose, ultra-thin poly(epsilon-caprolactone) (PCL) films of 5-15 microm thickness were fabricated via a biaxial stretching technique. To evaluate their in vivo biocompatibility and feasibility as an external wound dressing, PCL films were applied over full and partial-thickness wounds in rat and pig models. Different groups of PCL films were used: untreated, NaOH-treated, untreated with fibrin, NaOH-treated with perforations, and NaOH-treated with fibrin and S-nitrosoglutathione. Wounds with no external dressings were used as controls. Wound contraction rate, histology and biomechanical analyses were carried out. Wounds re-epithelialized completely at a comparable rate. Formation of a neo-dermal layer and re-epithelialization were observed in all the wounds. A lower level of fibrosis was observed when PCL films were used, compared to the control wounds. Ultimate tensile strength of the regenerated tissue in rats reached 50-60% of that in native rat skin. Results indicated that biaxially-stretched PCL films did not induce inflammatory reactions when used in vivo as a wound dressing and supported the normal wound healing process in full and partial-thickness wounds.
Resumo:
The repair of dermal tissue is a complex process of interconnected phenomena, where cellular, chemical and mechanical aspects all play a role, both in an autocrine and in a paracrine fashion. Recent experimental results have shown that transforming growth factor-beta (TGF-beta) and tissue mechanics play roles in regulating cell proliferation, differentiation and the production of extracellular materials. We have developed a 1D mathematical model that considers the interaction between the cellular, chemical and mechanical phenomena, allowing the combination of TGF-beta and tissue stress to inform the activation of fibroblasts to myofibroblasts. Additionally, our model incorporates the observed feature of residual stress by considering the changing zero-stress state in the formulation for effective strain. Using this model, we predict that the continued presence of TGF-beta in dermal wounds will produce contractures due to the persistence of myofibroblasts; in contrast, early elimination of TGF-beta significantly reduces the myofibroblast numbers resulting in an increase in wound size. Similar results were obtained by varying the rate at which fibroblasts differentiate to myofibroblasts and by changing the myofibroblast apoptotic rate. Taken together, the implication is that elevated levels of myofibroblasts is the key factor behind wounds healing with excessive contraction, suggesting that clinical strategies which aim to reduce the myofibroblast density may reduce the appearance of contractures.
Resumo:
Numerous difficulties are associated with the conduct of preclinical studies related to skin and wound repair. Use of small animal models such as rodents is not optimal because of their physiological differences to human skin and mode of wound healing. Although pigs have previously been used because of their human-like mode of healing, the expense and logistics related to their use also renders them suboptimal. In view of this, alternatives are urgently required to advance the field. The experiments reported herein were aimed at developing and validating a simple, reproducible, three-dimensional ex vivo de-epidermised dermis human skin equivalent wound model for the preclinical evaluation of novel wound therapies. Having established that the human skin equivalent wound model does in fact “heal," we tested the effect of two novel wound healing therapies. We also examined the utility of the model for studies exploring the mechanisms underpinning these therapies. Taken together the data demonstrate that these new models will have wide-spread application for the generation of fundamental new information on wound healing processes and also hold potential in facilitating preclinical optimization of dosage, duration of therapies, and treatment strategies prior to clinical trials.
Resumo:
Chronicwounds fail to proceed through an orderly process to produce anatomic and functional integrity and are a significant socioeconomic problem. There is much debate about the best way to treat these wounds. In this thesis we review earlier mathematical models of angiogenesis and wound healing. Many of these models assume a chemotactic response of endothelial cells, the primary cell type involved in angiogenesis. Modelling this chemotactic response leads to a system of advection-dominated partial differential equations and we review numerical methods to solve these equations and argue that the finite volume method with flux limiting is best-suited to these problems. One treatment of chronic wounds that is shrouded with controversy is hyperbaric oxygen therapy (HBOT). There is currently no conclusive data showing that HBOT can assist chronic wound healing, but there has been some clinical success. In this thesis we use several mathematical models of wound healing to investigate the use of hyperbaric oxygen therapy to assist the healing process - a novel threespecies model and a more complex six-species model. The second model accounts formore of the biological phenomena but does not lend itself tomathematical analysis. Bothmodels are then used tomake predictions about the efficacy of hyperbaric oxygen therapy and the optimal treatment protocol. Based on our modelling, we are able to make several predictions including that intermittent HBOT will assist chronic wound healing while normobaric oxygen is ineffective in treating such wounds, treatment should continue until healing is complete and finding the right protocol for an individual patient is crucial if HBOT is to be effective. Analysis of the models allows us to derive constraints for the range of HBOT protocols that will stimulate healing, which enables us to predict which patients are more likely to have a positive response to HBOT and thus has the potential to assist in improving both the success rate and thus the cost-effectiveness of this therapy.