985 resultados para work ontology
Resumo:
This thesis seeks to elucidate a motif common to the work both of Jean-Paul Sartre and Alain Badiou (with special attention being given to Being and Nothingness and Being and Event respectively): the thesis that the subject 's existence precedes and determines its essence. To this end, the author aims to explicate the structural invariances, common to both philosophies, that allow this thesis to take shape. Their explication requires the construction of an overarching conceptual framework within which it may be possible to embed both the phenomenological ontology elaborated in Being and Event and the mathematical ontology outlined in Being and Event. Within this framework, whose axial concept is that of multiplicity, the precedence of essence by existence becomes intelligible in terms of a priority of extensional over intensional determination. A series of familiar existentialist concepts are reconstructed on this basis, such as lack and value, and these are set to work in the task of fleshing out the more or less skeletal theory of the subject presented in Being and Event.
Resumo:
In studying affect within the realm of student-teacher relationships my thesis project use the concept of “affect” as composed by Baruch Spinoza (1992, 2007). I focus specifically on how Deleuze (1988) interprets and implements the term within his own philosophy, as well as on Antonio Negri’s (2011, 1991) work on Spinoza including his and Michael Hardt’s (2000, 2004, 2009) more recent works. This thesis will explore Spinoza’s affect within the discourse of Affective Pedagogy and Critical Pedagogy while remaining committed to a Spinoizist ontology as outlined by Deleuze (1988). I used artefacts from my past experiences as a student and teacher to produce evocative writing pieces which act as affective continuances of my past experiences as a student, student-teacher, and teacher, and the relationships of affect that composed them. This project used these artefacts and the writings they produced as sites of intensity that are carried through from traces, to evocative thresholds, to concepts, and finally into analysis.
Resumo:
It is problematic to use standard ontology tools when describing vague domains. Standard ontologies are designed to formally define one view of a domain, and although it is possible to define disagreeing statements, it is not advisable, as the resulting inferences could be incorrect. Two different solutions to the above problem in two different vague domains have been developed and are presented. The first domain is the knowledge base of conversational agents (chatbots). An ontological scripting language has been designed to access ontology data from within chatbot code. The solution developed is based on reifications of user statements. It enables a new layer of logics based on the different views of the users, enabling the body of knowledge to grow automatically. The second domain is competencies and competency frameworks. An ontological framework has been developed to model different competencies using the emergent standards. It enables comparison of competencies using a mix of linguistic logics and descriptive logics. The comparison results are non-binary, therefore not simple yes and no answers, highlighting the vague nature of the comparisons. The solution has been developed with small ontologies which can be added to and modified in order for the competency user to build a total picture that fits the user’s purpose. Finally these two approaches are viewed in the light of how they could aid future work in vague domains, further work in both domains is described and also in other domains such as the semantic web. This demonstrates two different approaches to achieve inferences using standard ontology tools in vague domains.
Resumo:
Nowadays, the popularity of the Web encourages the development of Hypermedia Systems dedicated to e-learning. Nevertheless, most of the available Web teaching systems apply the traditional paper-based learning resources presented as HTML pages making no use of the new capabilities provided by the Web. There is a challenge to develop educative systems that adapt the educative content to the style of learning, context and background of each student. Another research issue is the capacity to interoperate on the Web reusing learning objects. This work presents an approach to address these two issues by using the technologies of the Semantic Web. The approach presented here models the knowledge of the educative content and the learner’s profile with ontologies whose vocabularies are a refinement of those defined on standards situated on the Web as reference points to provide semantics. Ontologies enable the representation of metadata concerning simple learning objects and the rules that define the way that they can feasibly be assembled to configure more complex ones. These complex learning objects could be created dynamically according to the learners’ profile by intelligent agents that use the ontologies as the source of their beliefs. Interoperability issues were addressed by using an application profile of the IEEE LOM- Learning Object Metadata standard.
Resumo:
This paper presents a domain ontology, the FeelingTheMusic Ontology - FTMOntology. FTMOntology is designed to represent the complex domain of music and how it relates to other domains like mood, personality and physiology. This includes representing the main concepts and relations of music domain with each of the above-mentioned domains. The concepts and relations between music, mood, personality and physiology. The main contribution of this work is to model and relate these different domains in a consistent ontology. © 2011 Springer-Verlag.
Resumo:
Background: Ontologies have increasingly been used in the biomedical domain, which has prompted the emergence of different initiatives to facilitate their development and integration. The Open Biological and Biomedical Ontologies (OBO) Foundry consortium provides a repository of life-science ontologies, which are developed according to a set of shared principles. This consortium has developed an ontology called OBO Relation Ontology aiming at standardizing the different types of biological entity classes and associated relationships. Since ontologies are primarily intended to be used by humans, the use of graphical notations for ontology development facilitates the capture, comprehension and communication of knowledge between its users. However, OBO Foundry ontologies are captured and represented basically using text-based notations. The Unified Modeling Language (UML) provides a standard and widely-used graphical notation for modeling computer systems. UML provides a well-defined set of modeling elements, which can be extended using a built-in extension mechanism named Profile. Thus, this work aims at developing a UML profile for the OBO Relation Ontology to provide a domain-specific set of modeling elements that can be used to create standard UML-based ontologies in the biomedical domain. Results: We have studied the OBO Relation Ontology, the UML metamodel and the UML profiling mechanism. Based on these studies, we have proposed an extension to the UML metamodel in conformance with the OBO Relation Ontology and we have defined a profile that implements the extended metamodel. Finally, we have applied the proposed UML profile in the development of a number of fragments from different ontologies. Particularly, we have considered the Gene Ontology (GO), the PRotein Ontology (PRO) and the Xenopus Anatomy and Development Ontology (XAO). Conclusions: The use of an established and well-known graphical language in the development of biomedical ontologies provides a more intuitive form of capturing and representing knowledge than using only text-based notations. The use of the profile requires the domain expert to reason about the underlying semantics of the concepts and relationships being modeled, which helps preventing the introduction of inconsistencies in an ontology under development and facilitates the identification and correction of errors in an already defined ontology.
Resumo:
Abstract Background The search for enriched (aka over-represented or enhanced) ontology terms in a list of genes obtained from microarray experiments is becoming a standard procedure for a system-level analysis. This procedure tries to summarize the information focussing on classification designs such as Gene Ontology, KEGG pathways, and so on, instead of focussing on individual genes. Although it is well known in statistics that association and significance are distinct concepts, only the former approach has been used to deal with the ontology term enrichment problem. Results BayGO implements a Bayesian approach to search for enriched terms from microarray data. The R source-code is freely available at http://blasto.iq.usp.br/~tkoide/BayGO in three versions: Linux, which can be easily incorporated into pre-existent pipelines; Windows, to be controlled interactively; and as a web-tool. The software was validated using a bacterial heat shock response dataset, since this stress triggers known system-level responses. Conclusion The Bayesian model accounts for the fact that, eventually, not all the genes from a given category are observable in microarray data due to low intensity signal, quality filters, genes that were not spotted and so on. Moreover, BayGO allows one to measure the statistical association between generic ontology terms and differential expression, instead of working only with the common significance analysis.
Resumo:
Constructing ontology networks typically occurs at design time at the hands of knowledge engineers who assemble their components statically. There are, however, use cases where ontology networks need to be assembled upon request and processed at runtime, without altering the stored ontologies and without tampering with one another. These are what we call "virtual [ontology] networks", and keeping track of how an ontology changes in each virtual network is called "multiplexing". Issues may arise from the connectivity of ontology networks. In many cases, simple flat import schemes will not work, because many ontology managers can cause property assertions to be erroneously interpreted as annotations and ignored by reasoners. Also, multiple virtual networks should optimize their cumulative memory footprint, and where they cannot, this should occur for very limited periods of time. We claim that these problems should be handled by the software that serves these ontology networks, rather than by ontology engineering methodologies. We propose a method that spreads multiple virtual networks across a 3-tier structure, and can reduce the amount of erroneously interpreted axioms, under certain raw statement distributions across the ontologies. We assumed OWL as the core language handled by semantic applications in the framework at hand, due to the greater availability of reasoners and rule engines. We also verified that, in common OWL ontology management software, OWL axiom interpretation occurs in the worst case scenario of pre-order visit. To measure the effectiveness and space-efficiency of our solution, a Java and RESTful implementation was produced within an Apache project. We verified that a 3-tier structure can accommodate reasonably complex ontology networks better, in terms of the expressivity OWL axiom interpretation, than flat-tree import schemes can. We measured both the memory overhead of the additional components we put on top of traditional ontology networks, and the framework's caching capabilities.
Resumo:
Background: The failure rate of health information systems is high, partially due to fragmented, incomplete, or incorrect identification and description of specific and critical domain requirements. In order to systematically transform the requirements of work into real information system, an explicit conceptual framework is essential to summarize the work requirements and guide system design. Recently, Butler, Zhang, and colleagues proposed a conceptual framework called Work Domain Ontology (WDO) to formally represent users’ work. This WDO approach has been successfully demonstrated in a real world design project on aircraft scheduling. However, as a top level conceptual framework, this WDO has not defined an explicit and well specified schema (WDOS) , and it does not have a generalizable and operationalized procedure that can be easily applied to develop WDO. Moreover, WDO has not been developed for any concrete healthcare domain. These limitations hinder the utility of WDO in real world information system in general and in health information system in particular. Objective: The objective of this research is to formalize the WDOS, operationalize a procedure to develop WDO, and evaluate WDO approach using Self-Nutrition Management (SNM) work domain. Method: Concept analysis was implemented to formalize WDOS. Focus group interview was conducted to capture concepts in SNM work domain. Ontology engineering methods were adopted to model SNM WDO. Part of the concepts under the primary goal “staying healthy” for SNM were selected and transformed into a semi-structured survey to evaluate the acceptance, explicitness, completeness, consistency, experience dependency of SNM WDO. Result: Four concepts, “goal, operation, object and constraint”, were identified and formally modeled in WDOS with definitions and attributes. 72 SNM WDO concepts under primary goal were selected and transformed into semi-structured survey questions. The evaluation indicated that the major concepts of SNM WDO were accepted by 41 overweight subjects. SNM WDO is generally independent of user domain experience but partially dependent on SNM application experience. 23 of 41 paired concepts had significant correlations. Two concepts were identified as ambiguous concepts. 8 extra concepts were recommended towards the completeness of SNM WDO. Conclusion: The preliminary WDOS is ready with an operationalized procedure. SNM WDO has been developed to guide future SNM application design. This research is an essential step towards Work-Centered Design (WCD).
Resumo:
In the beginning of the 90s, ontology development was similar to an art: ontology developers did not have clear guidelines on how to build ontologies but only some design criteria to be followed. Work on principles, methods and methodologies, together with supporting technologies and languages, made ontology development become an engineering discipline, the so-called Ontology Engineering. Ontology Engineering refers to the set of activities that concern the ontology development process and the ontology life cycle, the methods and methodologies for building ontologies, and the tool suites and languages that support them. Thanks to the work done in the Ontology Engineering field, the development of ontologies within and between teams has increased and improved, as well as the possibility of reusing ontologies in other developments and in final applications. Currently, ontologies are widely used in (a) Knowledge Engineering, Artificial Intelligence and Computer Science, (b) applications related to knowledge management, natural language processing, e-commerce, intelligent information integration, information retrieval, database design and integration, bio-informatics, education, and (c) the Semantic Web, the Semantic Grid, and the Linked Data initiative. In this paper, we provide an overview of Ontology Engineering, mentioning the most outstanding and used methodologies, languages, and tools for building ontologies. In addition, we include some words on how all these elements can be used in the Linked Data initiative.
Resumo:
Semantic Web aims to allow machines to make inferences using the explicit conceptualisations contained in ontologies. By pointing to ontologies, Semantic Web-based applications are able to inter-operate and share common information easily. Nevertheless, multilingual semantic applications are still rare, owing to the fact that most online ontologies are monolingual in English. In order to solve this issue, techniques for ontology localisation and translation are needed. However, traditional machine translation is difficult to apply to ontologies, owing to the fact that ontology labels tend to be quite short in length and linguistically different from the free text paradigm. In this paper, we propose an approach to enhance machine translation of ontologies based on exploiting the well-structured concept descriptions contained in the ontology. In particular, our approach leverages the semantics contained in the ontology by using Cross Lingual Explicit Semantic Analysis (CLESA) for context-based disambiguation in phrase-based Statistical Machine Translation (SMT). The presented work is novel in the sense that application of CLESA in SMT has not been performed earlier to the best of our knowledge.
Resumo:
La evaluación de ontologías, incluyendo diagnóstico y reparación de las mismas, es una compleja actividad que debe llevarse a cabo en cualquier proyecto de desarrollo ontológico para comprobar la calidad técnica de las ontologías. Sin embargo, existe una gran brecha entre los enfoques metodológicos sobre la evaluación de ontologías y las herramientas que le dan soporte. En particular, no existen enfoques que proporcionen guías concretas sobre cómo diagnosticar y, en consecuencia, reparar ontologías. Esta tesis pretende avanzar en el área de la evaluación de ontologías, concretamente en la actividad de diagnóstico. Los principales objetivos de esta tesis son (a) ayudar a los desarrolladores en el diagnóstico de ontologías para encontrar errores comunes y (b) facilitar dicho diagnóstico reduciendo el esfuerzo empleado proporcionando el soporte tecnológico adecuado. Esta tesis presenta las siguientes contribuciones: • Catálogo de 41 errores comunes que los ingenieros ontológicos pueden cometer durante el desarrollo de ontologías. • Modelo de calidad para el diagnóstico de ontologías alineando el catálogo de errores comunes con modelos de calidad existentes. • Diseño e implementación de 48 métodos para detectar 33 de los 41 errores comunes en el catálogo. • Soporte tecnológico OOPS!, que permite el diagnstico de ontologías de forma (semi)automática. De acuerdo con los comentarios recibidos y los resultados de los test de satisfacción realizados, se puede afirmar que el enfoque desarrollado y presentado en esta tesis ayuda de forma efectiva a los usuarios a mejorar la calidad de sus ontologías. OOPS! ha sido ampliamente aceptado por un gran número de usuarios de formal global y ha sido utilizado alrededor de 3000 veces desde 60 países diferentes. OOPS! se ha integrado en software desarrollado por terceros y ha sido instalado en empresas para ser utilizado tanto durante el desarrollo de ontologías como en actividades de formación. Abstract Ontology evaluation, which includes ontology diagnosis and repair, is a complex activity that should be carried out in every ontology development project, because it checks for the technical quality of the ontology. However, there is an important gap between the methodological work about ontology evaluation and the tools that support such an activity. More precisely, not many approaches provide clear guidance about how to diagnose ontologies and how to repair them accordingly. This thesis aims to advance the current state of the art of ontology evaluation, specifically in the ontology diagnosis activity. The main goals of this thesis are (a) to help ontology engineers to diagnose their ontologies in order to find common pitfalls and (b) to lessen the effort required from them by providing the suitable technological support. This thesis presents the following main contributions: • A catalogue that describes 41 pitfalls that ontology developers might include in their ontologies. • A quality model for ontology diagnose that aligns the pitfall catalogue to existing quality models for semantic technologies. • The design and implementation of 48 methods for detecting 33 out of the 41 pitfalls defined in the catalogue. • A system called OOPS! (OntOlogy Pitfall Scanner!) that allows ontology engineers to (semi)automatically diagnose their ontologies. According to the feedback gathered and satisfaction tests carried out, the approach developed and presented in this thesis effectively helps users to increase the quality of their ontologies. At the time of writing this thesis, OOPS! has been broadly accepted by a high number of users worldwide and has been used around 3000 times from 60 different countries. OOPS! is integrated with third-party software and is locally installed in private enterprises being used both for ontology development activities and training courses.
Resumo:
The main goal of this paper is to present the initial version of a Textile Chemical Ontology, to be used by textile professionals with the purpose of conceptualising and representing the banned and harmful chemical substances that are forbidden in this domain. After analysing different methodologies and determining that “Methontology” is the most appropriate for the purposes, this methodology is explored and applied to the domain. In this manner, an initial set of concepts are defined, together with their hierarchy and the relationships between them. This paper shows the benefits of using the ontology through a real use case in the context of Information Retrieval. The potentiality of the proposed ontology in this preliminary evaluation encourages extending the ontology with a higher number of concepts and relationships, and validating it within other Natural Language Processing applications.
Resumo:
This paper proposes a novel framework of incorporating protein-protein interactions (PPI) ontology knowledge into PPI extraction from biomedical literature in order to address the emerging challenges of deep natural language understanding. It is built upon the existing work on relation extraction using the Hidden Vector State (HVS) model. The HVS model belongs to the category of statistical learning methods. It can be trained directly from un-annotated data in a constrained way whilst at the same time being able to capture the underlying named entity relationships. However, it is difficult to incorporate background knowledge or non-local information into the HVS model. This paper proposes to represent the HVS model as a conditionally trained undirected graphical model in which non-local features derived from PPI ontology through inference would be easily incorporated. The seamless fusion of ontology inference with statistical learning produces a new paradigm to information extraction.