839 resultados para word representations
Resumo:
Recent advances in neural language models have contributed new methods for learning distributed vector representations of words (also called word embeddings). Two such methods are the continuous bag-of-words model and the skipgram model. These methods have been shown to produce embeddings that capture higher order relationships between words that are highly effective in natural language processing tasks involving the use of word similarity and word analogy. Despite these promising results, there has been little analysis of the use of these word embeddings for retrieval. Motivated by these observations, in this paper, we set out to determine how these word embeddings can be used within a retrieval model and what the benefit might be. To this aim, we use neural word embeddings within the well known translation language model for information retrieval. This language model captures implicit semantic relations between the words in queries and those in relevant documents, thus producing more accurate estimations of document relevance. The word embeddings used to estimate neural language models produce translations that differ from previous translation language model approaches; differences that deliver improvements in retrieval effectiveness. The models are robust to choices made in building word embeddings and, even more so, our results show that embeddings do not even need to be produced from the same corpus being used for retrieval.
Resumo:
This paper presents some developments in query expansion and document representation of our spoken document retrieval system and shows how various retrieval techniques affect performance for different sets of transcriptions derived from a common speech source. Modifications of the document representation are used, which combine several techniques for query expansion, knowledge-based on one hand and statistics-based on the other. Taken together, these techniques can improve Average Precision by over 19% relative to a system similar to that which we presented at TREC-7. These new experiments have also confirmed that the degradation of Average Precision due to a word error rate (WER) of 25% is quite small (3.7% relative) and can be reduced to almost zero (0.2% relative). The overall improvement of the retrieval system can also be observed for seven different sets of transcriptions from different recognition engines with a WER ranging from 24.8% to 61.5%. We hope to repeat these experiments when larger document collections become available, in order to evaluate the scalability of these techniques.
Resumo:
Free-word order languages have long posed significant problems for standard parsing algorithms. This thesis presents an implemented parser, based on Government-Binding (GB) theory, for a particular free-word order language, Warlpiri, an aboriginal language of central Australia. The words in a sentence of a free-word order language may swap about relatively freely with little effect on meaning: the permutations of a sentence mean essentially the same thing. It is assumed that this similarity in meaning is directly reflected in the syntax. The parser presented here properly processes free word order because it assigns the same syntactic structure to the permutations of a single sentence. The parser also handles fixed word order, as well as other phenomena. On the view presented here, there is no such thing as a "configurational" or "non-configurational" language. Rather, there is a spectrum of languages that are more or less ordered. The operation of this parsing system is quite different in character from that of more traditional rule-based parsing systems, e.g., context-free parsers. In this system, parsing is carried out via the construction of two different structures, one encoding precedence information and one encoding hierarchical information. This bipartite representation is the key to handling both free- and fixed-order phenomena. This thesis first presents an overview of the portion of Warlpiri that can be parsed. Following this is a description of the linguistic theory on which the parser is based. The chapter after that describes the representations and algorithms of the parser. In conclusion, the parser is compared to related work. The appendix contains a substantial list of test cases ??th grammatical and ungrammatical ??at the parser has actually processed.
Resumo:
Spoken word recognition, during gating, appears intact in specific language impairment (SLI). This study used gating to investigate the process in adolescents with autism spectrum disorders plus language impairment (ALI). Adolescents with ALI, SLI, and typical language development (TLD), matched on nonverbal IQ listened to gated words that varied in frequency (low/high) and number of phonological onset neighbors (low/high density). Adolescents with ALI required more speech input to initially identify low-frequency words with low competitor density than those with SLI and those with TLD, who did not differ. These differences may be due to less well specified word form representations in ALI.
Resumo:
A study of the concurrent relationships between naming speed, phonological awareness and spelling ability in 146 children in Year 3 and 4 of state funded school in SE England (equivalent to US Grades 2 and 3) is reported. Seventy-two children identified as having normal phonological awareness but reduced rapid automatized naming (RAN) performance (1 standard deviation below the mean) participated in the study. A group of 74 children were further identified. These children were matched on phonological awareness, verbal and non verbal IQ, and visual acuity but all members of this group showed normal rapid automatized naming performance. Rapid automatized naming made a significant unique contribution to spelling performance. Further analyses showed that the participants with low naming performance were significantly poorer spellers overall and had a specific difficulty in spelling irregular words. The findings support the view that rapid automatized naming may be indexing processes that are implicated in the establishment of fully specified orthographic representations.
Resumo:
With the progressing course of Alzheimer's disease (AD), deficits in declarative memory increasingly restrict the patients' daily activities. Besides the more apparent episodic (biographical) memory impairments, the semantic (factual) memory is also affected by this neurodegenerative disorder. The episodic pathology is well explored; instead the underlying neurophysiological mechanisms of the semantic deficits remain unclear. For a profound understanding of semantic memory processes in general and in AD patients, the present study compares AD patients with healthy controls and Semantic Dementia (SD) patients, a dementia subgroup that shows isolated semantic memory impairments. We investigate the semantic memory retrieval during the recording of an electroencephalogram, while subjects perform a semantic priming task. Precisely, the task demands lexical (word/nonword) decisions on sequentially presented word pairs, consisting of semantically related or unrelated prime-target combinations. Our analysis focuses on group-dependent differences in the amplitude and topography of the event related potentials (ERP) evoked by related vs. unrelated target words. AD patients are expected to differ from healthy controls in semantic retrieval functions. The semantic storage system itself, however, is thought to remain preserved in AD, while SD patients presumably suffer from the actual loss of semantic representations.
Resumo:
This review discusses how neuroimaging can contribute to our understanding of a fundamental aspect of skilled reading: the ability to pronounce a visually presented word. One contribution of neuroimaging is that it provides a tool for localizing brain regions that are active during word reading. To assess the extent to which similar results are obtained across studies, a quantitative review of nine neuroimaging investigations of word reading was conducted. Across these studies, the results converge to reveal a set of areas active during word reading, including left-lateralized regions in occipital and occipitotemporal cortex, the left frontal operculum, bilateral regions within the cerebellum, primary motor cortex, and the superior and middle temporal cortex, and medial regions in the supplementary motor area and anterior cingulate. Beyond localization, the challenge is to use neuroimaging as a tool for understanding how reading is accomplished. Central to this challenge will be the integration of neuroimaging results with information from other methodologies. To illustrate this point, this review will highlight the importance of spelling-to-sound consistency in the transformation from orthographic (word form) to phonological (word sound) representations, and then explore results from three neuroimaging studies in which the spelling-to-sound consistency of the stimuli was deliberately varied. Emphasis is placed on the pattern of activation observed within the left frontal cortex, because the results provide an example of the issues and benefits involved in relating neuroimaging results to behavioral results in normal and brain damaged subjects, and to theoretical models of reading.
Resumo:
La recherche d'informations s'intéresse, entre autres, à répondre à des questions comme: est-ce qu'un document est pertinent à une requête ? Est-ce que deux requêtes ou deux documents sont similaires ? Comment la similarité entre deux requêtes ou documents peut être utilisée pour améliorer l'estimation de la pertinence ? Pour donner réponse à ces questions, il est nécessaire d'associer chaque document et requête à des représentations interprétables par ordinateur. Une fois ces représentations estimées, la similarité peut correspondre, par exemple, à une distance ou une divergence qui opère dans l'espace de représentation. On admet généralement que la qualité d'une représentation a un impact direct sur l'erreur d'estimation par rapport à la vraie pertinence, jugée par un humain. Estimer de bonnes représentations des documents et des requêtes a longtemps été un problème central de la recherche d'informations. Le but de cette thèse est de proposer des nouvelles méthodes pour estimer les représentations des documents et des requêtes, la relation de pertinence entre eux et ainsi modestement avancer l'état de l'art du domaine. Nous présentons quatre articles publiés dans des conférences internationales et un article publié dans un forum d'évaluation. Les deux premiers articles concernent des méthodes qui créent l'espace de représentation selon une connaissance à priori sur les caractéristiques qui sont importantes pour la tâche à accomplir. Ceux-ci nous amènent à présenter un nouveau modèle de recherche d'informations qui diffère des modèles existants sur le plan théorique et de l'efficacité expérimentale. Les deux derniers articles marquent un changement fondamental dans l'approche de construction des représentations. Ils bénéficient notamment de l'intérêt de recherche dont les techniques d'apprentissage profond par réseaux de neurones, ou deep learning, ont fait récemment l'objet. Ces modèles d'apprentissage élicitent automatiquement les caractéristiques importantes pour la tâche demandée à partir d'une quantité importante de données. Nous nous intéressons à la modélisation des relations sémantiques entre documents et requêtes ainsi qu'entre deux ou plusieurs requêtes. Ces derniers articles marquent les premières applications de l'apprentissage de représentations par réseaux de neurones à la recherche d'informations. Les modèles proposés ont aussi produit une performance améliorée sur des collections de test standard. Nos travaux nous mènent à la conclusion générale suivante: la performance en recherche d'informations pourrait drastiquement être améliorée en se basant sur les approches d'apprentissage de représentations.
Resumo:
La recherche d'informations s'intéresse, entre autres, à répondre à des questions comme: est-ce qu'un document est pertinent à une requête ? Est-ce que deux requêtes ou deux documents sont similaires ? Comment la similarité entre deux requêtes ou documents peut être utilisée pour améliorer l'estimation de la pertinence ? Pour donner réponse à ces questions, il est nécessaire d'associer chaque document et requête à des représentations interprétables par ordinateur. Une fois ces représentations estimées, la similarité peut correspondre, par exemple, à une distance ou une divergence qui opère dans l'espace de représentation. On admet généralement que la qualité d'une représentation a un impact direct sur l'erreur d'estimation par rapport à la vraie pertinence, jugée par un humain. Estimer de bonnes représentations des documents et des requêtes a longtemps été un problème central de la recherche d'informations. Le but de cette thèse est de proposer des nouvelles méthodes pour estimer les représentations des documents et des requêtes, la relation de pertinence entre eux et ainsi modestement avancer l'état de l'art du domaine. Nous présentons quatre articles publiés dans des conférences internationales et un article publié dans un forum d'évaluation. Les deux premiers articles concernent des méthodes qui créent l'espace de représentation selon une connaissance à priori sur les caractéristiques qui sont importantes pour la tâche à accomplir. Ceux-ci nous amènent à présenter un nouveau modèle de recherche d'informations qui diffère des modèles existants sur le plan théorique et de l'efficacité expérimentale. Les deux derniers articles marquent un changement fondamental dans l'approche de construction des représentations. Ils bénéficient notamment de l'intérêt de recherche dont les techniques d'apprentissage profond par réseaux de neurones, ou deep learning, ont fait récemment l'objet. Ces modèles d'apprentissage élicitent automatiquement les caractéristiques importantes pour la tâche demandée à partir d'une quantité importante de données. Nous nous intéressons à la modélisation des relations sémantiques entre documents et requêtes ainsi qu'entre deux ou plusieurs requêtes. Ces derniers articles marquent les premières applications de l'apprentissage de représentations par réseaux de neurones à la recherche d'informations. Les modèles proposés ont aussi produit une performance améliorée sur des collections de test standard. Nos travaux nous mènent à la conclusion générale suivante: la performance en recherche d'informations pourrait drastiquement être améliorée en se basant sur les approches d'apprentissage de représentations.
Resumo:
The essential first step for a beginning reader is to learn to match printed forms to phonological representations. For a new word, this is an effortful process where each grapheme must be translated individually (serial decoding). The role of phonological awareness in developing a decoding strategy is well known. We examined whether beginner readers recruit different skills depending on the nature of the words being read (familiar words vs. nonwords). Print knowledge, phoneme and rhyme awareness, rapid automatized naming (RAN), phonological short term memory (STM), nonverbal reasoning, vocabulary, auditory skills and visual attention were measured in 392 pre-readers aged 4 to 5 years. Word and nonword reading were measured 9 months later. We used structural equation modeling to examine the skills-reading relationship and modeled correlations between our two reading outcomes and among all pre-reading skills. We found that a broad range of skills were associated with reading outcomes: early print knowledge, phonological STM, phoneme awareness and RAN. Whereas all these skills were directly predictive of nonword reading, early print knowledge was the only direct predictor of word reading. Our findings suggest that beginner readers draw most heavily on their existing print knowledge to read familiar words.
Resumo:
In recent years, there has been an increas-ing interest in learning a distributed rep-resentation of word sense. Traditional context clustering based models usually require careful tuning of model parame-ters, and typically perform worse on infre-quent word senses. This paper presents a novel approach which addresses these lim-itations by first initializing the word sense embeddings through learning sentence-level embeddings from WordNet glosses using a convolutional neural networks. The initialized word sense embeddings are used by a context clustering based model to generate the distributed representations of word senses. Our learned represen-tations outperform the publicly available embeddings on 2 out of 4 metrics in the word similarity task, and 6 out of 13 sub tasks in the analogical reasoning task.
Resumo:
In recent years, there has been an increasing interest in learning a distributed representation of word sense. Traditional context clustering based models usually require careful tuning of model parameters, and typically perform worse on infrequent word senses. This paper presents a novel approach which addresses these limitations by first initializing the word sense embeddings through learning sentence-level embeddings from WordNet glosses using a convolutional neural networks. The initialized word sense embeddings are used by a context clustering based model to generate the distributed representations of word senses. Our learned representations outperform the publicly available embeddings on half of the metrics in the word similarity task, 6 out of 13 sub tasks in the analogical reasoning task, and gives the best overall accuracy in the word sense effect classification task, which shows the effectiveness of our proposed distributed distribution learning model.
Resumo:
Processing language is postulated to involve a mental simulation, or re-enactment of perceptual, motor, and introspective states that were acquired experientially (Barsalou, 1999, 2008). One such aspect that is mentally simulated during processing of certain concepts is spatial location. For example, upon processing the word “moon” the prominent spatial location of the concept (e.g. ‘upward’) is mentally simulated. In six eye-tracking experiments, we investigate how mental simulations of spatial location affect processing. We first address a conflict in previous literature whereby processing is shown to be impacted in both a facilitatory and inhibitory way. Two of our experiments showed that mental simulations of spatial association facilitate saccades launched toward compatible locations; however, a third experiment showed an inhibitory effect on saccades launched towards incompatible locations. We investigated these differences with further experiments, which led us to conclude that the nature of the effect (facilitatory or inhibitory) is dependent on the demands of the task and, in fitting with the theory of Grounded Cognition (Barsalou, 2008), that mental simulations impact processing in a dynamic way. Three further experiments explored the nature of verticality – specifically, whether ‘up’ is perceived as away from gravity, or above our head. Using similar eye-tracking methods, and by manipulating the position of participants, we were able to dissociate these two possible standpoints. The results showed that mental simulations of spatial location facilitated saccades to compatible locations, but only when verticality was dissociated from gravity (i.e. ‘up’ was above the participant’s head). We conclude that this is not due to an ‘embodied’ mental simulation, but rather a result of heavily ingrained visuo-motor association between vertical space and eye movements.