973 resultados para wild population
Resumo:
Previous studies addressing the importance of host gender in parasite transmission have shed light on males as the more important hosts, with the higher transmission potential of males being explained by the fact that they often harbour higher parasite loads than females. However, in some systems females are more heavily infected than males and may be responsible for driving infection under such circumstances. Using a wild population of common voles (Microtus arvalis), we showed that females were more frequently infected by the intestinal nematode Trichuris arvicolae than males (i.e. prevalence based on the presence of eggs in the faeces) and that females were shedding greater numbers of parasite eggs per gram of faeces (EPG) than males. By applying an anthelmintic treatment to either male or female voles, we demonstrated that treating females significantly reduced parasite burdens (i.e. prevalence and EPG) of both male and female hosts, while treating males only reduced parasite burden in males. These findings indicate that in this female-biased infection system females play a more important role than males in driving the dynamics of parasite transmission.
Resumo:
In several colour polymorphic species, morphs differ in thermoregulation either because dark and pale surfaces absorb solar radiation to a different extent and/or because morphs differ in key metabolic processes. Morph-specific thermoregulation may potentially account for the observation that differently coloured individuals are frequently not randomly distributed among habitats, and differ in many respects, including behaviour, morphology, survival and reproductive success. In a wild population of the colour polymorphic tawny owl Strix aluco, a recent cross-fostering experiment showed that offspring raised and born from red mothers were heavier than those from grey mothers. In the present study, we tested in the same individuals whether these morph-specific offspring growth patterns were associated with a difference in metabolic rate between offspring of red and grey mothers. For this purpose, we measured nestling oxygen consumption under two different temperatures (laboratory measurements: 4 and 20 degrees C), and examined the relationships between these data sets and the colour morph of foster and biological mothers. After controlling for nestling body mass, oxygen consumption at 20 degrees C was greater in foster offspring raised by grey foster mothers. No relationship was found between nestling oxygen consumption and coloration of their biological mother. Therefore, our study indicates that in our experiment offspring raised by grey foster mothers showed not only a lower body mass than offspring raised by red foster mothers, but also consumed more oxygen under warm temperature. This further indicates that rearing conditions in nests of grey mothers were more stressful than in nests of red mothers.
Resumo:
The finding of Panstrongylus geniculatus nymphs inside a house in northeastern Antioquia, Colombia, and the reports related to their increasing presence in homes suggest the need for surveillance methods for monitoring the invasion processes. We analyzed the morphological differences between a wild population and its laboratory descendants, using the techniques of geometric morphometry, with the idea that such differences might parallel those between sylvatic and synanthropic populations. The analyses over five generations showed differences in size but not in shape. Head size and wing size were both reduced from sylvatic to laboratory populations, but the decrease in head size occurred only up to the second generation while the decrease in wing size proceeded up to the fifth generation. In contrast, although a decrease in sexual size dimorphism has been proposed as a marker of colonization in human dwellings, we did not detect any significant loss of dimorphism between sexes of P. geniculatus over the five generations studied. We conclude that size changes may have a physiological origin in response to a change of ecotopes, but more than five generations may be required for the expression of permanent morphological markers of human dwellings colonization.
Resumo:
A comparative morphometric study was performed to identify host-induced morphological alterations in Schistosoma mansoni adult worms. A wild parasite population was obtained from a naturally infected rodent (Nectomys squamipes)and then recovered from laboratory infected C3H/He mice. Furthermore, allopatric worm populations maintained for long-term under laboratory conditions in Swiss Webster mice were passed on to N. squamipes. Suckers and genital system (testicular lobes, uterine egg, and egg spine) were analyzed by a digital system for image analysis. Confocal laser scanning microscopy (CLSM) showed details of the genital system (testicular lobes, vitelline glands, and ovary) and the tegument just below the ventral sucker. Significant morphological changes (p < 0.05) were detected in male worms in all experimental conditions, with no significant variability as assessed by CLSM. Significant changes (p < 0.05) were evident in females from the wild population related to their ovaries and vitelline glands, whereas allopatric females presented differences only in this last character. We conclude that S. mansoni worms present the phenotypic plasticity induced by modifications in the parasite's microenvironment, mainly during the first passage under laboratory conditions.
Resumo:
Natural selection is typically exerted at some specific life stages. If natural selection takes place before a trait can be measured, using conventional models can cause wrong inference about population parameters. When the missing data process relates to the trait of interest, a valid inference requires explicit modeling of the missing process. We propose a joint modeling approach, a shared parameter model, to account for nonrandom missing data. It consists of an animal model for the phenotypic data and a logistic model for the missing process, linked by the additive genetic effects. A Bayesian approach is taken and inference is made using integrated nested Laplace approximations. From a simulation study we find that wrongly assuming that missing data are missing at random can result in severely biased estimates of additive genetic variance. Using real data from a wild population of Swiss barn owls Tyto alba, our model indicates that the missing individuals would display large black spots; and we conclude that genes affecting this trait are already under selection before it is expressed. Our model is a tool to correctly estimate the magnitude of both natural selection and additive genetic variance.
Resumo:
1. Melanin pigments provide the most widespread source of coloration in vertebrates, but the adaptive function of such traits remains poorly known. 2. In a wild population of tawny owls (Strix aluco), we investigated the relationships between plumage coloration, which varies continuously from dark to pale reddish, and the strength and cost of an induced immune response. 3. The degree of reddishness in tawny owl feather colour was positively correlated with the concentration of phaeomelanin and eumelanin pigments, and plumage coloration was highly heritable (h(2) = 0.93). No carotenoids were detected in the feathers. 4. In mothers, the degree of melanin-based coloration was associated with antibody production against a vaccine, with dark reddish females maintaining a stronger level of antibody for a longer period of time compared to pale reddish females, but at a cost in terms of greater loss of body mass. 5. A cross-fostering experiment showed that, independent of maternal coloration, foster chicks reared by vaccinated mothers were lighter than those reared by nonvaccinated mothers. Hence, even though dark reddish mothers suffered a stronger immune cost than pale reddish mothers, this asymmetric cost was not translated to offspring growth. 6. Our study suggests that different heritable melanin-based colorations are associated with alternative strategies to resist parasite attacks, with dark reddish individuals investing more resources towards the humoral immune response than lightly reddish conspecifics.
Resumo:
To date very few studies have addressed the effects of inbreeding in social Hymenoptera, perhaps because the costs of inbreeding are generally considered marginal owing to male haploidy whereby recessive deleterious alleles are strongly exposed to selection in males. Here, we present one of the first studies on the effects of queen and worker homozygosity on colony performance. In a wild population of the ant Formica exsecta, the relative investment of single-queen colonies in sexual production decreased with increased worker homozygosity. This may either stem from increased homozygosity decreasing the likelihood of diploid brood to develop into queens or a lower efficiency of more homozygous workers at feeding larvae and thus a lower proportion of the female brood developing into queens. There was also a significant negative association between colony age and the level of queen but not worker homozygosity. This association may stem from inbreeding affecting queen lifespan and/or their fecundity, and thus colony survival. However, there was no association between queen homozygosity and colony size, suggesting that inbreeding affects colony survival as a result of inbred queens having a shorter lifespan rather than a lower fecundity. Finally, there was no significant association between either worker or queen homozygosity and the probability of successful colony founding, colony size and colony productivity, the three other traits studied. Overall, these results indicate that inbreeding depression may have important effects on colony fitness by affecting both the parental (queen) and offspring (worker)generations cohabiting within an ant colony.
Resumo:
The turbot (Scophthalmus maximus) is a commercially valuable flatfish and one of the most promising aquaculture species in Europe. Two transcriptome 454-pyrosequencing runs were used in order to detect Single Nucleotide Polymorphisms (SNPs) in genesrelated to immune response and gonad differentiation. A total of 866 true SNPs were detected in 140 different contigs representing 262,093 bp as a whole. Only one true SNP was analyzed in each contig. One hundred and thirteen SNPs out of the 140 analyzed were feasible (genotyped), while Ш were polymorphic in a wild population. Transition/transversion ratio (1.354) was similar to that observed in other fish studies. Unbiased gene diversity (He) estimates ranged from 0.060 to 0.510 (mean = 0.351), minimum allele frequency (MAF) from 0.030 to 0.500 (mean = 0.259) and all loci were in Hardy-Weinberg equilibrium after Bonferroni correction. A large number of SNPs (49) were located in the coding region, 33 representing synonymous and 16 non-synonymous changes. Most SNP-containing genes were related to immune response and gonad differentiation processes, and could be candidates for functional changes leading to phenotypic changes. These markers will be useful for population screening to look for adaptive variation in wild and domestic turbot
Resumo:
Colour polymorphism is common in wild population. One of the main questioning of evolutionary biologists is to understand how different colour variants could have evolved and be maintained in fluctuating environments, a selective process that forces individuals to constantly adapt their strategies in order to survive. This issue is particularly true for traits that are genetically inherited. Natural selection erodes genotypes with lowest fitness (less adapted), reducing in turn global genetic variation within population. In this context, the study of the evolution and maintenance of melanin- based coloration is relevant since inter-individual variation in the deposition of these pigments is common in animal and plant kingdoms and is under strong genetic control. In this thesis, I focus on the specific case of the tawny owl (Strix aluco), a species displaying continuous variation in reddish pheomelanin-based coloration. Interestingly, empirical studies highlighted covariations between melanin-based coloration and important behavioural, physiological and life history traits. Recently, a genetic model pointed out the melanocortin system and their pleiotropic effects as a potential regulator of these covariations. Accordingly, this PhD thesis further investigates colour-specific behavioural, physiological, or life history strategies, while examining the proximate mechanisms underlying these reaction norms. We found that differently coloured tawny owls differently resolve fundamental trade-off between offspring number and quality (Chapter 1), light melanic individuals producing many low- quality offspring and dark, melanic ones producing few high-quality offspring. These reproductive strategies are likely to induce alternative physiological constraints. Indeed, we demonstrated that light melanic individuals produced higher levels of reactive oxygen species (ROS, Chapter 2), but also expressed higher levels of antioxidant (GSH, Chapters 2 & 3). Interestingly, we showed that light melanic breeding females could modulate their POMC prohormone levels according to the environmental conditions, while dark reddish ones produced constant levels of this prohormone {Chapter 4). Finally, we highlighted colour-specific patterns of prohormone convertase 1 (PCI) gene expression (Chapter 5), an enzyme responsible for POMC prohormone processing to ACTH and a- MSH, for instance. Altogether, these results provide strong evidence of colour-specific strategies, light and melanic tawny owls better coping with stressful and relaxed environments, respectively. Variation in melanin-based coloration is likely to be maintained by the heterogeneity of our study area and strong environmental stochasticity within and between years, these process favouring differently coloured tawny owls at different periods of time. From a proximate point of view, this PhD thesis supports the hypothesis that covariations between phenotypic traits and melanin-based coloration stems from the melanocortin system, especially the fundamental role of POMC gene expression and its processing to melanocortin peptides. - Le polymorphisme de couleur est une variation phénotypique très fréquente dans la nature. En biologie évolutive, une des problématiques clés est donc de comprendre comment différent morphes de couleur peuvent être apparus et maintenus au cours du temps dans des environnements aussi variables que les nôtres, surtout que ces fluctuations forcent ces morphes à s'adapter constamment pour assurer leur survie. Cette thématique est particulièrement réelle lorsque les variations phénotypiques sont héréditaires et donc sous forte influence génétique. La sélection naturelle a en effet le pouvoir d'éroder rapidement la variation génétique en éliminant les génotypes mal adaptés. Dans ce sens, l'étude de l'évolution, et de la maintenance de la coloration mélanique est donc tout à fait pertinente car la variation de coloration entre individus est très répandue à travers les règnes animal et végétal et sous forte influence génétique. Dans cette thèse, je me suis concentré sur le cas spécifique de la chouette hulotte (Strix aluco), une espèce présentant une variation continue dans la déposition de pigments pheomélaniques roux. De précédentes études ont déjà montré que cette variation de coloration était associée avec des variations de traits comportementaux, physiologiques ou d'histoire de vie. Récemment, une étude a souligné l'importance du système des mélanocortines et de leurs effets pléiotropes dans la régulation de ces covariations. En conséquence, cette thèse de doctoral a pour but d'étudier un peu plus les stratégies comportementales, physiologiques ou d'histoire de vie spécifiques à chaque morphe de couleur, tout en examinant un peu plus les mécanismes proximaux potentiellement à la base de ces normes de réactions. Nous constatons tout d'abord que les morphes de couleurs étaient associés à différentes stratégies dans la résolution de compromis telle que la production de beaucoup de jeunes ou des jeunes de qualité (Chapitre 1). Les morphes gris (dit peu mélaniques) ont tendance à produire beaucoup de jeunes mains de moindre qualité, alors que les morphes roux (dit fortement mélaniques) produisent moins de jeunes mais de meilleure qualité. Ces stratégies sont susceptibles alors d'induire certaines contraintes physiologiques. Par exemple, nous montrons que les morphes gris produisent plus de dérivés réactifs de l'oxygène (ROS, Chapitre 2), mais aussi plus d'antioxydants (GSH, Chapitres 2 & 3). Nous montrons ensuite que les femelles grises ont une plus grande capacité à moduler leur niveau de POMC prohormone dans le sang en fonction des conditions environnementales, alors que les femelles rousses gardent un niveau constant (Chapitre 4). Finalement, nous démontrons que les patterns d'expression du gène codant pour la prohormone convertase 1 varient chez des jeunes issus de parents gris ou roux (Chapitre 5). Ceci est particulièrement intéressant car cette enzyme permet de scinder la POMC prohormone en plusieurs peptides importants tels que l'ACTH ou l'a-MSH. En conclusion, ces résultats démontrent qu'il y a bel et bien des stratégies évolutives différentes entre les morphes de couleurs, les chouettes hulottes grises et rousses étant respectivement plus adaptés à des environnements stressants ou favorables. L'hétérogénéité de notre zone d'étude et la stochasticité environnementale qui caractérise ses habitats pourraient donc agir comme une source de sélection temporelle, laquelle favoriserait les différents morphes de couleurs à diverses périodes. D'un point de vue plus proximale maintenant, cette thèse de doctorat soutient l'hypothèse que les covariations observées entre la coloration mélanique et des traits phénotypiques importants sont modulées par les effets pléiotropes du système des mélanocortines, et met en avant le rôle prépondérant que pourrait jouer l'expression du gène POMC et sa post traduction en mélanocortines.
Resumo:
Traditionally biologists have often considered individual differences in behaviour or physiology as a nuisance when investigating a population of individuals. These differences have mostly been dismissed as measurement errors or as non-adaptive variation around an adaptive population mean. Recent research, however, challenges this view. While long acknowledged in human personality studies, the importance of individual variation has recently entered into ecological and evolutionary studies in the form of animal personality. The concept of animal personality focuses on consistent differences within and between individuals in behavioural and physiological traits across time and contexts and its ecological and evolutionary consequences. Nevertheless, a satisfactory explanation for the existence of personality is still lacking. Although there is a growing number of explanatory theoretical models, there is still a lack of empirical studies on wild populations showing how traditional life-history tradeoffs can explain the maintenance of variation in personality traits. In this thesis, I first investigate the validity of variation in allostatic load or baseline corticosterone (CORT) concentrations as a measure for differences in individual quality. The association between CORT and quality has recently been summarised under the “CORT-fitness hypothesis”, which states that a general negative relationship between baseline CORT and fitness exists. I then continue to apply the concept of animal personality to depict how the life-history trade-off between survival and fecundity is mediated in incubating female eiders (Somateria mollissima), thereby maintaining variation in behaviour and physiology. To this end, I investigated breeding female eiders from a wild population that breeds in the archipelago around Tvärminne Zoological Station, SW Finland. The field data used was collected from 2008 to 2012. The overall aim of the thesis was to show how differences in personality and stress responsiveness are linked to a life-history context. In the four chapters I examine how the life-history trade-off between survival and fecundity could be resolved depending on consistent individual differences in escape behaviour, stress physiology, individual quality and nest-site selection. First, I corroborated the validity of the “CORT-fitness hypothesis”, by showing that reproductive success is generally negatively correlated with serum and faecal baseline CORT levels. The association between individual quality and baseline CORT is, however, context dependent. Poor body condition was associated with elevated serum baseline CORT only in older breeders, while a larger reproductive investment (clutch mass) was associated with elevated serum baseline CORT among females breeding late in the season. Interestingly, good body condition was associated with elevated faecal baseline CORT levels in late breeders. High faecal baseline CORT levels were positively related to high baseline body temperature, and breeders in poor condition showed an elevated baseline body temperature, but only on open islands. The relationship between stress physiology and individual quality is modulated by breeding experience and breeding phenology. Consequently, the context dependency highlights that this relationship has to be interpreted cautiously. Additionally, I verified if stress responsiveness is related to risk-taking behaviour. Females who took fewer risks (longer flight initiation distance) showed a stronger stress response (measured as an increase in CORT concentration after capture and handling of the bird). However, this association was modulated by breeding experience and body condition, with young breeders and those in poor body condition showing the strongest relationship between risktaking and stress responsiveness. Shy females (longer flight initiation distance) also incubated their clutch for a shorter time. Additionally, I demonstrated that stress responsiveness and predation risk interact with maternal investment and reproductive success. Under high risk of predation, females that incubated a larger clutch showed a stronger stress response. Surprisingly, these females also exhibited higher reproductive success than females with a weaker stress response. Again, these context dependent results suggest that the relationship between stress responsiveness and risk-taking behaviour should not be studied in isolation from individual quality and that stress responsiveness may show adaptive plasticity when individuals are exposed to different predation regimes. Finally, female risk-taking behaviour and stress coping styles were also related to nest-site choice. Less stress responsive females more frequently occupied nests with greater coverage that were farther away from the shoreline. Females nesting in nests with medium cover and farther from the shoreline had higher reproductive success. These results suggest that different personality types are distributed non-randomly in space. In this thesis I was able to demonstrate that personalities and stress coping strategies are persistent individual characteristics, which express measurable effects on fitness. This suggests that those traits are exposed to natural selection and thereby can evolve. Furthermore, individual variation in personality and stress coping strategy is linked to the alternative ways in which animals resolve essential life-history trade-offs.
Resumo:
Echinocactus grusonii is common in trade but critically endangered in its natural habitat. With the ultimate aim of developing a certification scheme to aid in the conservation of this species, we have isolated E. grusonii microsatellites from a nonenriched library. Fifty-seven sequences contained a microsatellite array, of which 12 were polymorphic among 30 individuals from a single wild population. All 12 microsatellite primer pairs amplified product in one or more species in a screen of 27 other cactus species.
Resumo:
Gomortega keule (Molina) Baillon is an endangered, rare species, the only representative of its genus, and endemic to Central Chile. Populations of this tree are now fragmented and few individuals can be found in any of them. Genetic diversity was studied in 33 individuals from three populations in Cauquenes, a coastal mountain area (35°58'S-72°41'W). Fifteen InterSimple Sequence Repeat primers were used to determine the degree of similarity between and within populations. This revealed that 30% of the variation exhibited was between populations while 70% was within; nevertheless individuals were clearly clustered in a pattern which reflected a narrow base of diversity. Three other species from the Laurales order were used in order to provide an external reference as to the degree of diversity. In addition, an external wild population from the native species, Peumus boldus, was used to verify the utility of the markers. We show that the primers are effective in quickly giving an estimate of the degree of diversity of a population, thus giving important topical information relevant to preserving endangered species. Aspects of the conservation and management policy for the species in order to maintain the remaining populations and to preserve the genetic resources are discussed.
Resumo:
The South China tiger, Panthera tigris amoyensis, once roamed the greater part of southern China. However, expanding human populations and other anthropogenic effects have resulted in the extinction of the wild population. The Chinese government has expressed interest in a reintroduction program for this species of tigers. Recent studies suggest that the Hupingshan preserve is potentially a good candidate for a tiger reintroduction program. Hupingshan is located on the border of the Hunan and Hubei provinces in Southern China. This study was a preliminary habitat suitability analysis, for the restoration of South China tigers in the Hupingshan reserve, China. ArcGIS 9.0 was used to develop a model that combined roads, railroads, slope, land cover, park classification, and population density. The tiger habitat suitability analysis was performed by weighting and combining the various layers. Preliminary results suggest that the Hupingshan reserve is suitable habitat for the reintroduction of South China tigers.
Resumo:
Realizou-se a contagem dos ovos não eclodidos, dos filhotes vivos e mortos de Podocnemis expansa oriundos de 327 ninhos naturais, localizados nas praias da Área de Proteção Ambiental (APA) - Meandros do Rio Araguaia, onde se determinou a porcentagem de eclosão dos ovos (94,63%); não eclosão (5,37%); sobrevivência (94,24%) e mortalidade dos filhotes (5,76%), e a média de filhotes mortos durante os 15 dias no berçário (0,97%). A média do total de filhotes por ninho foi determinada pela soma do número de filhotes vivos e mortos divididos pelo total de ninhos, enquanto que a média do total de ovos por ninho foi determinada pela soma do número de filhotes vivos, mortos e ovos não eclodidos divididos pelo total de ninhos. Com isso, obtiveram-se os valores médios do número de filhotes vivos (88,98 ± 23,94); mortos (0,37 ± 0,93); ovos não eclodidos (5,07 ± 9,57), e total de ovos (94,42 ± 21,30). A eficiência reprodutiva da população selvagem de P. expansa pode ser afetada por muitos fatores ambientais, como temperatura, umidade e precipitação. Além disso, fatores influenciados pelo homem, como a presença de produtos químicos na água e a possibilidade de doenças infecciosas, também têm impacto significativo. Os dados dos índices reprodutivos obtidos neste estudo são indispensáveis para futuras investigações de anomalias de incubação.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)