861 resultados para white dwarf


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Halo white dwarfs remain one of the least studied stellar populations in the Milky Way because of their faint luminosities. Recent work has uncovered a population of hot white dwarfs which are thought to be remnants of low-mass Population II stars. This thesis uses optical data from the Next Generation Virgo Cluster Survey (NGVS) and ultravoilet data from the GALEX Ultraviolet Virgo Cluster Survey (GUViCS) to select candidates which may belong to this population of recently formed halo white dwarfs. A colour selection was used to separate white dwarfs from QSOs and main-sequence stars. Photometric distances are calculated using model colour-absolute magnitude relations. Proper motions are calculated by using the difference in positions between objects from the Sloan Digital Sky Survey and the NGVS. The proper motions are combined with the calculated photometric distances to calculate tangential velocities, as well as approximate Galactic space velocities. White dwarf candidates are characterized as belonging to either the disk or the halo using a variety of methods, including calculated scale heights (z> 1 kpc), tangential velocities (vt >200 km/s), and their location in (V,U) space. The 20 halo white dwarf candidates which were selected using Galactic space velocities are analyzed, and their colours and temperatures suggest that these objects represent some of the youngest white dwarfs in the Galactic halo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present results based on observations of SN 2015H which belongs to the small group of objects similar to SN 2002cx, otherwise known as type Iax supernovae. The availability of deep pre-explosion imaging allowed us to place tight constraints on the explosion epoch. Our observational campaign began approximately one day post-explosion, and extended over a period of about 150 days post maximum light, making it one of the best observed objects of this class to date. We find a peak magnitude of Mr = -17.27± 0.07, and a (Δm15)r = 0.69 ± 0.04. Comparing our observations to synthetic spectra generated from simulations of deflagrations of Chandrasekhar mass carbon-oxygen white dwarfs, we find reasonable agreement with models of weak deflagrations that result in the ejection of ∼0.2 M of material containing ∼0.07 M of 56Ni. The model light curve however, evolves more rapidly than observations, suggesting that a higher ejecta mass is to be favoured. Nevertheless, empirical modelling of the pseudo-bolometric light curve suggests that ≲ 0.6 M of material was ejected, implying that the white dwarf is not completely disrupted, and that a bound remnant is a likely outcome.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In recent years a number of white dwarfs have been observed with very high surface magnetic fields. We can expect that the magnetic field in the core of these stars would be much higher (similar to 10(14) G). In this paper, we analytically study the effect of high magnetic field on relativistic cold electron, and hence its effect on the stability and the mass-radius relation of a magnetic white dwarf. In strong magnetic fields, the equation of state of the Fermi gas is modified and Landau quantization comes into play. For relatively very high magnetic fields (with respect to the average energy density of matter) the number of Landau levels is restricted to one or two. We analyze the equation of states for magnetized electron degenerate gas analytically and attempt to understand the conditions in which transitions from the zeroth Landau level to first Landau level occurs. We also find the effect of the strong magnetic field on the star collapsing to a white dwarf, and the mass-radius relation of the resulting star. We obtain an interesting theoretical result that it is possible to have white dwarfs with mass more than the mass set by Chandrasekhar limit.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Several recently discovered peculiar Type Ia supernovae seem to demand an altogether new formation theory that might help explain the puzzling dissimilarities between them and the standard Type Ia supernovae. The most striking aspect of the observational analysis is the necessity of invoking super-Chandrasekhar white dwarfs having masses similar to 2.1-2.8 M-circle dot, M-circle dot being the mass of Sun, as their most probable progenitors. Strongly magnetized white dwarfs having super-Chandrasekhar masses have already been established as potential candidates for the progenitors of peculiar Type Ia supernovae. Owing to the Landau quantization of the underlying electron degenerate gas, theoretical results yielded the observationally inferred mass range. Here, we sketch a possible evolutionary scenario by which super-Chandrasekhar white dwarfs could be formed by accretion on to a commonly observed magnetized white dwarf, invoking the phenomenon of flux freezing. This opens multiple possible evolution scenarios ending in supernova explosions of super-Chandrasekhar white dwarfs having masses within the range stated above. We point out that our proposal has observational support, such as the recent discovery of a large number of magnetized white dwarfs by the Sloan Digital Sky Survey.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

GD 552 is a high proper motion star with the strong, double-peaked emission lines characteristic of the dwarf nova class of cataclysmic variable (CV) star, and yet no outburst has been detected during the past 12yr of monitoring. We present spectroscopy taken with the aim of detecting emission from the mass donor in this system. We fail to do so at a level which allows us to rule out the presence of a near-main-sequence star donor. Given GD 552's orbital period of 103 min, this suggests that it is either a system that has evolved through the ~80-minute orbital period minimum of CV stars and now has a brown dwarf mass donor, or that has formed with a brown dwarf donor in the first place. This model explains the low observed orbital velocity of the white dwarf and GD 552's low luminosity. It is also consistent with the absence of outbursts from the system.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Thermonuclear explosions may arise in binary star systems in which a carbon-oxygen (CO) white dwarf (WD) accretes helium-rich material from a companion star. If the accretion rate allows a sufficiently large mass of helium to accumulate prior to ignition of nuclear burning, the helium surface layer may detonate, giving rise to an astrophysical transient. Detonation of the accreted helium layer generates shock waves that propagate into the underlying CO WD. This might directly ignite a detonation of the CO WD at its surface (an edge-lit secondary detonation) or compress the core of the WD sufficiently to trigger a CO detonation near the centre. If either of these ignition mechanisms works, the two detonations (helium and CO) can then release sufficient energy to completely unbind the WD. These 'double-detonation' scenarios for thermonuclear explosion of WDs have previously been investigated as a potential channel for the production of Type Ia supernovae from WDs of ~ 1 M . Here we extend our 2D studies of the double-detonation model to significantly less massive CO WDs, the explosion of which could produce fainter, more rapidly evolving transients. We investigate the feasibility of triggering a secondary core detonation by shock convergence in low-mass CO WDs and the observable consequences of such a detonation. Our results suggest that core detonation is probable, even for the lowest CO core masses that are likely to be realized in nature. To quantify the observable signatures of core detonation, we compute spectra and light curves for models in which either an edge-lit or compression-triggered CO detonation is assumed to occur. We compare these to synthetic observables for models in which no CO detonation was allowed to occur. If significant shock compression of the CO WD occurs prior to detonation, explosion of the CO WD can produce a sufficiently large mass of radioactive iron-group nuclei to significantly affect the light curves. In particular, this can lead to relatively slow post-maximum decline. If the secondary detonation is edge-lit, however, the CO WD explosion primarily yields intermediate-mass elements that affect the observables more subtly. In this case, near-infrared observations and detailed spectroscopic analysis would be needed to determine whether a core detonation occurred. We comment on the implications of our results for understanding peculiar astrophysical transients including SN 2002bj, SN 2010X and SN 2005E. © 2012 The Authors Monthly Notices of the Royal Astronomical Society © 2012 RAS.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Context. The recent discovery of a very bright type la supernova, SNLS-03D3bb (=SN 2003fg), in the Supernova Legacy Survey (SNLS) has raised the question of whether super-Chandrasekhar-mass white-dwarf stars are needed to explain such bright explosions. Progenitors of this sort could form by mergers of pairs of rather massive white dwarfs. Binary systems of two white dwarfs in close orbit, where their total mass significantly exceeds the Chandrasekhar mass, have not yet been found. Therefore SNLS-03D3bb could establish the first clear case of a double-degenerate progenitor of a (peculiar) type la supernovae. Moreover, if this interpretation is correct, it casts some doubt on the universality of the calibration relations used to make SNe la distance indicators for cosmology. Aims. We aim to evaluate the case for a super-Chandrasekhar-mass progenitor for SNLS-03D3bb in light of previous theoretical work on super-Chandrasekhar-mass explosions. Furthermore, we propose an alternative scenario involving only a Chandrasekhar-mass progenitor. Methods. We present a theoretically motivated critical discussion of the expected observational fingerprints of super-Chandrasekharmass explosions. As an alternative, we describe a simple class of aspherical Chandrasekhar-mass models in which the products of nuclear burning are displaced from the center. We then perform simple radiative transfer calculations to predict synthetic lightcurves for one such off-center explosion model. Results. In important respects, the expected observational consequences of super-Chandrasekhar-mass explosions are not consistent with the observations of SNLS-03D3bb. We demonstrate that the lopsided explosion of a Chandrasekhar-mass white dwarf could provide a better explanation. © ESO 2007.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Type Ia supernovae are thought to result from thermonuclear explosions of carbong'oxygen white dwarf stars. Existing models generally explain the observed properties, with the exception of the sub-luminous 1991bg-like supernovae. It has long been suspected that the merger of two white dwarfs could give rise to a type Ia event, but hitherto simulations have failed to produce an explosion. Here we report a simulation of the merger of two equal-mass white dwarfs that leads to a sub-luminous explosion, although at the expense of requiring a single common-envelope phase, and component masses of 0.9M. The light curve is too broad, but the synthesized spectra, red colour and low expansion velocities are all close to what is observed for sub-luminous 1991bg-like events. Although the mass ratios can be slightly less than one and still produce a sub-luminous event, the masses have to be in the range 0.83M to 0.9M. © 2010 Macmillan Publishers Limited. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The violent merger of two carbon-oxygen white dwarfs has been proposed as a viable progenitor for some Type Ia supernovae. However, it has been argued that the strong ejecta asymmetries produced by this model might be inconsistent with the low degree of polarization typically observed in Type Ia supernova explosions. Here, we test this claim by carrying out a spectropolarimetric analysis for the model proposed by Pakmor et al. for an explosion triggered during the merger of a 1.1 and 0.9 M⊙ carbon-oxygen white dwarf binary system. Owing to the asymmetries of the ejecta, the polarization signal varies significantly with viewing angle. We find that polarization levels for observers in the equatorial plane are modest (≲1 per cent) and show clear evidence for a dominant axis, as a consequence of the ejecta symmetry about the orbital plane. In contrast, orientations out of the plane are associated with higher degrees of polarization and departures from a dominant axis. While the particular model studied here gives a good match to highly polarized events such as SN 2004dt, it has difficulties in reproducing the low polarization levels commonly observed in normal Type Ia supernovae. Specifically, we find that significant asymmetries in the element distribution result in a wealth of strong polarization features that are not observed in the majority of currently available spectropolarimetric data of Type Ia supernovae. Future studies will map out the parameter space of the merger scenario to investigate if alternative models can provide better agreement with observations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We explore the consequences of the model of spin-down-induced flux expulsion for the magnetic field evolution in solitary as well as in binary neutron stars. The spin evolution of pulsars, allowing for their field evolution according to this model, is shown to be consistent with the existing observational constraints in both low- and high-mass X-ray binary systems. The contribution from pulsars recycled in massive binaries to the observed excess in the number of low-field (10(11)-10(12) G) solitary pulsars is argued to be negligible in comparison with that of normal pulsars undergoing a 'restricted' field decay predicted by the adopted field decay model. Magnetic fields of neutron stars born in close binaries with intermediate- or high-mass main-sequence companions are predicted to decay down to values as low as similar to 10(6) G, which would leave them unobservable as pulsars during most of their lifetimes. The post-recycling evolution of some of these systems can, however, account for the observed binary pulsars having neutron star or massive white dwarf companions. Pulsars recycled in the disc population low-mass binaries are expected to have residual fields greater than or similar to 10(8) G, while for those processed in globular clusters larger residual fields are predicted because of the lower field strength of the neutron star at the epoch of binary formation. A value of tau similar to 1-2 x 10(7) yr for the mean value of the Ohmic decay time-scale in the crusts of neutron stars is suggested, based on the consistency of the model predictions with the observed distribution of periods and magnetic fields in the single and binary pulsars.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The AM CVn systems are a rare class of ultra-compact astrophysical binaries. With orbital periods of under an hour and as short as five minutes, they are among the closest known binary star systems and their evolution has direct relevance to the type Ia supernova rate and the white dwarf binary population. However, their faint and rare nature has made population studies of these systems difficult and several studies have found conflicting results.

I undertook a survey for AM CVn systems using the Palomar Transient Factory (PTF) astrophysical synoptic survey by exploiting the "outbursts" these systems undergo. Such events result in an increase in luminosity by a factor of up to two-hundred and are detectable in time-domain photometric data of AM CVn systems. My search resulted in the discovery of eight new systems, over 20% of the current known population. More importantly, this search was done in a systematic fashion, which allows for a population study properly accounting for biases.

Apart from the discovery of new systems, I used the time-domain data from the PTF and other synoptic surveys to better understand the long-term behavior of these systems. This analysis of the photometric behavior of the majority of known AM CVn systems has shown changes in their behavior at longer time scales than have previously been observed. This has allowed me to find relationships between the outburst properties of an individual system and its orbital period.

Even more importantly, the systematically selected sample together with these properties have allowed me to conduct a population study of the AM CVn systems. I have shown that the latest published estimates of the AM CVn system population, a factor of fifty below theoretical estimates, are consistent with the sample of systems presented here. This is particularly noteworthy since my population study is most sensitive to a different orbital period regime than earlier surveys. This confirmation of the population density will allow the AM CVn systems population to be used in the study of other areas of astrophysics.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This thesis presents a study of the dynamical stability of nascent neutron stars resulting from the accretion induced collapse of rapidly rotating white dwarfs.

Chapter 2 and part of Chapter 3 study the equilibrium models for these neutron stars. They are constructed by assuming that the neutron stars have the same masses, angular momenta, and specific angular momentum distributions as the pre-collapse white dwarfs. If the pre-collapse white dwarf is rapidly rotating, the collapsed object will contain a high density central core of size about 20 km, surrounded by a massive accretion torus extending to hundreds of kilometers from the rotation axis. The ratio of the rotational kinetic energy to gravitational binding energy, β, of these neutron stars is all found to be less than 0.27.

Chapter 3 studies the dynamical stability of these neutron stars by numerically evolving the linearized hydrodynamical equations. A dynamical bar-mode instability is observed when the β of the star is greater than the critical value βd ≈ 0.25. It is expected that the unstable mode will persist until a substantial amount of angular momentum is carried away by gravitational radiation. The detectability of these sources is studied and it is estimated that LIGO II is unlikely to detect them unless the event rate is greater than 10-6/year/galaxy.

All the calculations on the structure and stability of the neutron stars in Chapters 2 and 3 are carried out using Newtonian hydrodynamics and gravity. Chapter 4 studies the relativistic effects on the structure of these neutron stars. New techniques are developed and used to construct neutron star models to the first post-Newtonian (1PN) order. The structures of the 1PN models are qualitatively similar to the corresponding Newtonian models, but the values of β are somewhat smaller. The maximum β for these 1PN neutron stars is found to be 0.24, which is 8% smaller than the Newtonian result (0.26). However, relativistic effects will also change the critical value βd. A detailed post-Newtonian stability analysis has yet to be carried out to study the relativistic effects on the dynamical stability of these neutron stars.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fast radio bursts (FRBs), a novel type of radio pulse, whose physics is not yet understood at all. Only a handful of FRBs had been detected when we started this project. Taking account of the scant observations, we put physical constraints on FRBs. We excluded proposals of a galactic origin for their extraordinarily high dispersion measures (DM), in particular stellar coronas and HII regions. Therefore our work supports an extragalactic origin for FRBs. We show that the resolved scattering tail of FRB 110220 is unlikely to be due to propagation through the intergalactic plasma. Instead the scattering is probably caused by the interstellar medium in the FRB's host galaxy, and indicates that this burst sits in the central region of that galaxy. Pulse durations of order $\ms$ constrain source sizes of FRBs implying enormous brightness temperatures and thus coherent emission. Electric fields near FRBs at cosmological distances would be so strong that they could accelerate free electrons from rest to relativistic energies in a single wave period. When we worked on FRBs, it was unclear whether they were genuine astronomical signals as distinct from `perytons', clearly terrestrial radio bursts, sharing some common properties with FRBs. Recently, in April 2015, astronomers discovered that perytons were emitted by microwave ovens. Radio chirps similar to FRBs were emitted when their doors opened while they were still heating. Evidence for the astronomical nature of FRBs has strengthened since our paper was published. Some bursts have been found to show linear and circular polarizations and Faraday rotation of the linear polarization has also been detected. I hope to resume working on FRBs in the near future. But after we completed our FRB paper, I decided to pause this project because of the lack of observational constraints.

The pulsar triple system, J0733+1715, has its orbital parameters fitted to high accuracy owing to the precise timing of the central $\ms$ pulsar. The two orbits are highly hierarchical, namely $P_{\mathrm{orb,1}}\ll P_{\mathrm{orb,2}}$, where 1 and 2 label the inner and outer white dwarf (WD) companions respectively. Moreover, their orbital planes almost coincide, providing a unique opportunity to study secular interaction associated purely with eccentricity beyond the solar system. Secular interaction only involves effect averaged over many orbits. Thus each companion can be represented by an elliptical wire with its mass distributed inversely proportional to its local orbital speed. Generally there exists a mutual torque, which vanishes only when their apsidal lines are parallel or anti-parallel. To maintain either mode, the eccentricity ratio, $e_1/e_2$, must be of the proper value, so that both apsidal lines precess together. For J0733+1715, $e_1\ll e_2$ for the parallel mode, while $e_1\gg e_2$ for the anti-parallel one. We show that the former precesses $\sim 10$ times slower than the latter. Currently the system is dominated by the parallel mode. Although only a little anti-parallel mode survives, both eccentricities especially $e_1$ oscillate on $\sim 10^3\yr$ timescale. Detectable changes would occur within $\sim 1\yr$. We demonstrate that the anti-parallel mode gets damped $\sim 10^4$ times faster than its parallel brother by any dissipative process diminishing $e_1$. If it is the tidal damping in the inner WD, we proceed to estimate its tidal quantity parameter ($Q$) to be $\sim 10^6$, which was poorly constrained by observations. However, tidal damping may also happen during the preceding low-mass X-ray binary (LMXB) phase or hydrogen thermal nuclear flashes. But, in both cases, the inner companion fills its Roche lobe and probably suffers mass/angular momentum loss, which might cause $e_1$ to grow rather than decay.

Several pairs of solar system satellites occupy mean motion resonances (MMRs). We divide these into two groups according to their proximity to exact resonance. Proximity is measured by the existence of a separatrix in phase space. MMRs between Io-Europa, Europa-Ganymede and Enceladus-Dione are too distant from exact resonance for a separatrix to appear. A separatrix is present only in the phase spaces of the Mimas-Tethys and Titan-Hyperion MMRs and their resonant arguments are the only ones to exhibit substantial librations. When a separatrix is present, tidal damping of eccentricity or inclination excites overstable librations that can lead to passage through resonance on the damping timescale. However, after investigation, we conclude that the librations in the Mimas-Tethys and Titan-Hyperion MMRs are fossils and do not result from overstability.

Rubble piles are common in the solar system. Monolithic elements touch their neighbors in small localized areas. Voids occupy a significant fraction of the volume. In a fluid-free environment, heat cannot conduct through voids; only radiation can transfer energy across them. We model the effective thermal conductivity of a rubble pile and show that it is proportional the square root of the pressure, $P$, for $P\leq \epsy^3\mu$ where $\epsy$ is the material's yield strain and $\mu$ its shear modulus. Our model provides an excellent fit to the depth dependence of the thermal conductivity in the top $140\,\mathrm{cm}$ of the lunar regolith. It also offers an explanation for the low thermal inertias of rocky asteroids and icy satellites. Lastly, we discuss how rubble piles slow down the cooling of small bodies such as asteroids.

Electromagnetic (EM) follow-up observations of gravitational wave (GW) events will help shed light on the nature of the sources, and more can be learned if the EM follow-ups can start as soon as the GW event becomes observable. In this paper, we propose a computationally efficient time-domain algorithm capable of detecting gravitational waves (GWs) from coalescing binaries of compact objects with nearly zero time delay. In case when the signal is strong enough, our algorithm also has the flexibility to trigger EM observation {\it before} the merger. The key to the efficiency of our algorithm arises from the use of chains of so-called Infinite Impulse Response (IIR) filters, which filter time-series data recursively. Computational cost is further reduced by a template interpolation technique that requires filtering to be done only for a much coarser template bank than otherwise required to sufficiently recover optimal signal-to-noise ratio. Towards future detectors with sensitivity extending to lower frequencies, our algorithm's computational cost is shown to increase rather insignificantly compared to the conventional time-domain correlation method. Moreover, at latencies of less than hundreds to thousands of seconds, this method is expected to be computationally more efficient than the straightforward frequency-domain method.