857 resultados para white coat ceremony
Resumo:
In this study, we assessed whether the white-coat effect (difference between office and daytime blood pressure (BP)) is associated with nondipping (absence of BP decrease at night). Data were available in 371 individuals of African descent from 74 families selected from a population-based hypertension register in the Seychelles Islands and in 295 Caucasian individuals randomly selected from a population-based study in Switzerland. We used standard multiple linear regression in the Swiss data and generalized estimating equations to account for familial correlations in the Seychelles data. The prevalence of systolic and diastolic nondipping (<10% nocturnal BP decrease) and white-coat hypertension (WCH) was respectively 51, 46, and 4% in blacks and 33, 37, and 7% in whites. When white coat effect and nocturnal dipping were taken as continuous variables (mm Hg), systolic (SBP) and diastolic BP (DBP) dipping were associated inversely and independently with white-coat effect (P < 0.05) in both populations. Analogously, the difference between office and daytime heart rate was inversely associated with the difference between daytime and night-time heart rate in the two populations. These results did not change after adjustment for potential confounders. The white-coat effect is associated with BP nondipping. The similar associations between office-daytime values and daytime-night-time values for both BP and heart rate suggest that the sympathetic nervous system might play a role. Our findings also further stress the interest, for clinicians, of assessing the presence of a white-coat effect as a means to further identify patients at increased cardiovascular risk and guide treatment accordingly.
Resumo:
Adults with ambulatory hypertension or white coat hypertension (WCH) display abnormal cardiovascular rhythms. We studied cardiovascular rhythms by Fourier analysis of 24-h ambulatory blood pressure (BP) measurement profiles in 129 hypertensive children, 54 children with WCH, and 146 age-, height-, and gender-matched healthy subjects. The day/night mean arterial pressure ratio was lower in hypertensive and patients with WCH compared with controls (1.13 versus 1.16 versus 1.21, respectively; p < 0.0001). Eighty-five percent of controls were dippers compared with 74% of WCH (n.s.) and 64% of patients with ambulatory hypertension (p < 0.0001). The prevalence of 24-h rhythms was similar among the groups, but prevalence of 12-h BP rhythms was increased in hypertensive (67%) and WCH (72%) compared with controls (51%, p < 0.0001). The amplitudes of the 24-, 8-, and 6-h BP rhythms were reduced in hypertensive and WCH compared with controls (p < 0.05). Hypertensive and patients with WCH displayed delayed 24-, 12-, 8-, 6-h acrophases in comparison with controls (p < 0.05). In conclusion, hypertensive children exhibit abnormal cardiovascular rhythmicity compared with controls, especially a higher prevalence of nondipping compared with normotensive children. Abnormalities in patients with WCH are intermediate between healthy children and patients with ambulatory hypertension.
Resumo:
White coat colour in horses is inherited as a monogenic autosomal dominant trait showing a variable expression of coat depigmentation. Mutations in the KIT gene have previously been shown to cause white coat colour phenotypes in pigs, mice and humans. We recently also demonstrated that four independent mutations in the equine KIT gene are responsible for the dominant white coat colour phenotype in various horse breeds. We have now analysed additional horse families segregating for white coat colour phenotypes and report seven new KIT mutations in independent Thoroughbred, Icelandic Horse, German Holstein, Quarter Horse and South German Draft Horse families. In four of the seven families, only one single white horse, presumably representing the founder for each of the four respective mutations, was available for genotyping. The newly reported mutations comprise two frameshift mutations (c.1126_1129delGAAC; c.2193delG), two missense mutations (c.856G>A; c.1789G>A) and three splice site mutations (c.338-1G>C; c.2222-1G>A; c.2684+1G>A). White phenotypes in horses show a remarkable allelic heterogeneity. In fact, a higher number of alleles are molecularly characterized at the equine KIT gene than for any other known gene in livestock species.
Resumo:
Objective We investigated factors associated with masked and white-coat hypertension in a Swiss population-based sample. Methods The Swiss Kidney Project on Genes in Hypertension is a family-based cross-sectional study. Office and 24-hour ambulatory blood pressure were measured using validated devices. Masked hypertension was defined as office blood pressure<140/90 mmHg and daytime ambulatory blood pressure≥135/85 mmHg. White-coat hypertension was defined as office blood pressure≥140/90 mmHg and daytime ambulatory blood pressure<135/85 mmHg. Mixed-effect logistic regression was used to examine the relationship of masked and white-coat hypertension with associated factors, while taking familial correlations into account. High-normal office blood pressure was defined as systolic/diastolic blood pressure within the 130–139/85–89 mmHg range. Results Among the 652 participants included in this analysis, 51% were female. Mean age (±SD) was 48 (±18) years. The proportion of participants with masked and white coat hypertension was respectively 15.8% and 2.6%. Masked hypertension was associated with age (odds ratio (OR) = 1.02, p = 0.012), high-normal office blood pressure (OR = 6.68, p<0.001), and obesity (OR = 3.63, p = 0.001). White-coat hypertension was significantly associated with age (OR = 1.07, p<0.001) but not with education, family history of hypertension, or physical activity. Conclusions Our findings suggest that physicians should consider ambulatory blood pressure monitoring for older individuals with high-normal office blood pressure and/or who are obese.
Resumo:
Objectives: To assess the relation between white coat hypertension and alterations of left ventricular structure and function.
Resumo:
Mutations in the gene encoding the endothelin receptor type B (EDNRB) produce congenital aganglionic megacolon and pigment abnormalities in mice and humans. Here we report a naturally occurring null mutation of the EDNRB gene in spotting lethal (sl) rats, which exhibit aganglionic megacolon associated with white coat color. We found a 301-bp deletion spanning the exon 1-intron 1 junction of the EDNRB gene in sl rats. A restriction fragment length polymorphism caused by this deletion perfectly cosegregates with the sl phenotype. The deletion leads to production of an aberrantly spliced EDNRB mRNA that lacks the coding sequence for the first and second putative transmembrane domains of the G-protein-coupled receptor. Radioligand binding assays revealed undetectable levels of functional EDNRB in tissues from homozygous sl/sl rats. We conclude that EDNRB plays an essential role in the normal development of two neural crest-derived cell lineages, epidermal melanocytes and enteric neurons, in three mammalian species--humans, mice, and rats. The EDNRB-deficient rat may also prove valuable in defining the postnatal physiologic role of this receptor.
Resumo:
Morphological characteristics, coat effective radiative properties, and the percentage of white colour were measured in the coats of 973 Holstein cows, and estimates of the genetic parameters were obtained for these traits, except morphological characteristics. The results showed that white coats are more dense with long, thin hairs, while the black coats are less dense with short, thick hairs. Effective transmissivity is greater in the less-dense coats with short, thin hairs, independently of coat colour. Effective reflectivity depends more on the variation in the radiative properties of the coat and skin surface rather than on the morphological characteristics of the coat. Effective absorptivity is greater in black and dense coats with long, thick hairs, than in the white and less-dense coat with short, thin hairs. All heritability estimates were of low magnitude, except for the percentage of white coat colour.
Resumo:
White coat color has been a highly valued trait in horses for at least 2,000 years. Dominant white (W) is one of several known depigmentation phenotypes in horses. It shows considerable phenotypic variation, ranging from approximately 50% depigmented areas up to a completely white coat. In the horse, the four depigmentation phenotypes roan, sabino, tobiano, and dominant white were independently mapped to a chromosomal region on ECA 3 harboring the KIT gene. KIT plays an important role in melanoblast survival during embryonic development. We determined the sequence and genomic organization of the approximately 82 kb equine KIT gene. A mutation analysis of all 21 KIT exons in white Franches-Montagnes Horses revealed a nonsense mutation in exon 15 (c.2151C>G, p.Y717X). We analyzed the KIT exons in horses characterized as dominant white from other populations and found three additional candidate causative mutations. Three almost completely white Arabians carried a different nonsense mutation in exon 4 (c.706A>T, p.K236X). Six Camarillo White Horses had a missense mutation in exon 12 (c.1805C>T, p.A602V), and five white Thoroughbreds had yet another missense mutation in exon 13 (c.1960G>A, p.G654R). Our results indicate that the dominant white color in Franches-Montagnes Horses is caused by a nonsense mutation in the KIT gene and that multiple independent mutations within this gene appear to be responsible for dominant white in several other modern horse populations.
Resumo:
White spotting phenotypes have been intensively studied in horses, and although similar phenotypes occur in the donkey, little is known about the molecular genetics underlying these patterns in donkeys. White spotting in donkeys can range from only a few white areas to almost complete depigmentation and is characterised by a loss of pigmentation usually progressing from a white spot in the hip area. Completely white-born donkeys are rare, and the phenotype is characterised by the complete absence of pigment resulting in pink skin and a white coat. A dominant mode of inheritance has been demonstrated for spotting in donkeys. Although the mode of inheritance for the completely white phenotype in donkeys is not clear, the phenotype shows similarities to dominant white in horses. As variants in the KIT gene are known to cause a range of white phenotypes in the horse, we investigated the KIT gene as a potential candidate gene for two phenotypes in the donkey, white spotting and white. A mutation analysis of all 21 KIT exons identified a missense variant in exon 4 (c.662A>C; p.Tyr221Ser) present only in a white-born donkey. A second variant affecting a splice donor site (c.1978+2T>A) was found exclusively in donkeys with white spotting. Both variants were absent in 24 solid-coloured controls. To the authors' knowledge, this is the first study investigating genetic mechanisms underlying white phenotypes in donkeys. Our results suggest that two independent KIT alleles are probably responsible for white spotting and white in donkeys.