986 resultados para western South Atlantic
Resumo:
We explored the potential to use the stable isotopic compositions of planktonic foraminifera as a proxy for the position of the Brazil-Malvinas Confluence (BMC) in the Argentine Basin. For this purpose, we measured the oxygen and carbon isotopic compositions of Globigerinoides ruber (pink and white varieties measured separately), Globigerinoides trilobus, Globigerina bulloides, Globorotalia inflata and Globorotalia truncatulinoides (left- and right-coiling forms measured separately) from a latitudinal transect of 56 surface sediment samples from the continental slope off Brazil, Uruguay and Argentina between 20 and 48°S. Lowest oxygen isotopes values were found in G. ruber (pink), followed by G. ruber (white) and G. trilobus reflecting the highly stratified near surface water conditions north of the BMC. Globigerina bulloides was present mainly south of the BMC and records subsurface conditions supporting earlier plankton tow studies. Globorotalia inflata and G. truncatulinoides (left and right) were both available over the whole transect and calcify in the depth level with the steepest temperature change across the BMC. Accordingly, the delta18O of these species depict a sharp gradient of 2? at the confluence with remarkably stable values north and south of the BMC. Our data show that the oxygen isotopic composition of G. inflata and G. truncatulinoides (left and right) are the most reliable indicators for the present position of the BMC and can therefore be used to define the past migration of the front if appropriate cores are available.
Resumo:
Benthic foraminiferal Cd/Ca from an intermediate depth, western South Atlantic core documents the history of southward penetration of North Atlantic Intermediate Water (NAIW). Cd seawater estimates (CdW) for the last glacial are consistent with the production of NAIW and its export into the South Atlantic. At ~14.5 ka concurrently with the onset of the Bølling-Allerød to Younger Dryas cooling, the NAIW contribution to the South Atlantic began to decrease, marking the transition from a glacial circulation pattern to a Younger Dryas circulation. High CdW in both the deep North Atlantic and the intermediate South Atlantic imply reduced export of deep and intermediate water during the Younger Dryas and a significant decrease in northward oceanic heat transport. A modern circulation was achieved at ~9 ka, concurrently with the establishment of Holocene warmth in the North Atlantic region, further supporting a close linkage between deepwater variability and North Atlantic climate.
Resumo:
Rhynchonelliform brachiopods were diverse and often dominant benthos of tropical seas in the Paleozoic. In contrast, they are believed to be rare in open habitats of modern oceans, especially at low latitudes. This study documents numerous occurrences of rhynchonelliform brachiopods on a modern tropical shelf, particularly in areas influenced by upwelling. Extensive sampling of the outer shelf and coastal bays of the Southeast Brazilian Bight revealed dense populations of terebratulid brachiopods (>10(3) individuals /m(2) of seafloor) between 24 and 26 S. on the outer shelf, brachiopods are more abundant than bivalves and gastropods combined. However, brachiopod diversity is low: only four species belonging to the genera Bouchardia, Terebratulina, Argyrotheca, and Platidia were identified among over 16000 examined specimens. Brachiopods occur preferentially on carbonate bottoms and include two substrate-related associations: Bouchardia (40-70% CaCO3, weight content) and Terebratulina-Argyrotheca (70-95% CaCO3). All four species display a broad bathymetric range that contrasts with a narrow depth tolerance postulated for many Paleozoic rhynchonelliforms. The most abundant populations occur in the depth range between 100 and 200 m, and coincide with zones of shelf-break upwelling, where relatively colder and nutrient-rich water masses of the South Atlantic Central Water are brought upward by cyclonic meanders of the South Brazil Current (a western boundary current that flows poleward along the coast of Brazil). This is consistent with previous biological and paleontological studies that suggest upwelling may play a role in sustaining brachiopod-dominated benthic associations. The presence of abundant brachiopods in the open habitats of the tropical shelf of the western South Atlantic contrasts with current understanding of their latitudinal distribution and points to major gaps in our knowledge of their present-day biogeography. The ecological importance of rhynchonelliform brachiopods in modern oceans and their role as producers of biogenic sedimentary particles may be underestimated.
Resumo:
A depth transect of cores from 1268 to 3909 m water depth in the western South Atlantic are ideally situated to monitor the interocean exchange of deep water and variations in the relative strength of northern and southern sources of deep water production. Benthic foraminiferal Cd/Ca and d13C data suggest that Glacial North Atlantic Intermediate Water (GNAIW) extended at least as far south as 28°S in the western South Atlantic. The core of nutrient-depleted water was situated at ~1500 m, above and below water masses with higher nutrient concentrations. When examined in conjunction with published paired Cd/Ca and d13C from intermediate depth cores from other basins, it appears that the extent of GNAIW influence on the intermediate waters of the world's oceans was less than suggested previously. Differentiating among possible pathways for the glacial deep ocean (>3 km) requires a better understanding of the controls on Cd/Ca and d13C values of benthic foraminifera.
Resumo:
Over 300 surface sediment samples from the Central and South Atlantic Ocean and the Caribbean Sea were investigated for the preservation state of the aragonitic test of Limacina inflata. Results are displayed in spatial distribution maps and are plotted against cross-sections of vertical water mass configurations, illustrating the relationship between preservation state, saturation state of the overlying waters, and overall water mass distribution. The microscopic investigation of L. inflata (adults) yielded the Limacina dissolution index (LDX), and revealed three regional dissolution patterns. In the western Atlantic Ocean, sedimentary preservation states correspond to saturation states in the overlying waters. Poor preservation is found within intermediate water masses of southern origin (i.e. Antarctic intermediate water (AAIW), upper circumpolar water (UCDW)), which are distinctly aragonite-corrosive, whereas good preservation is observed within the surface waters above and within the upper North Atlantic deep water (UNADW) beneath the AAIW. In the eastern Atlantic Ocean, in particular along the African continental margin, the LDX fails in most cases (i.e. less than 10 tests of L. inflata per sample were found). This is most probably due to extensive "metabolic" aragonite dissolution at the sediment-water interface combined with a reduced abundance of L. inflata in the surface waters. In the Caribbean Sea, a more complex preservation pattern is observed because of the interaction between different water masses, which invade the Caribbean basins through several channels, and varying input of bank-derived fine aragonite and magnesian calcite material. The solubility of aragonite increases with increasing pressure, but aragonite dissolution in the sediments does not simply increase with water depth. Worse preservation is found in intermediate water depths following an S-shaped curve. As a result, two aragonite lysoclines are observed, one above the other. In four depth transects, we show that the western Atlantic and Caribbean LDX records resemble surficial calcium carbonate data and delta13C and carbonate ion concentration profiles in the water column. Moreover, preservation of L. inflata within AAIW and UCDW improves significantly to the north, whereas carbonate corrosiveness diminishes due to increased mixing of AAIW and UNADW. The close relationship between LDX values and aragonite contents in the sediments shows much promise for the quantification of the aragonite loss under the influence of different water masses. LDX failure and uncertainties may be attributed to (1) aragonite dissolution due to bottom water corrosiveness, (2) aragonite dissolution due to additional CO2 release into the bottom water by the degradation of organic matter based on an enhanced supply of organic matter into the sediment, (3) variations in the distribution of L. inflata and hence a lack of supply into the sediment, (4) dilution of the sediments and hence a lack of tests of L. inflata, or (5) redeposition of sediment particles.
Resumo:
We have analyzed the stable carbon isotopic composition of the diunsaturated C37 alkenone in 29 surface sediments from the equatorial and South Atlantic Ocean. Our study area covers different oceanographic settings, including sediments from the major upwelling regions off South Africa, the equatorial upwelling, and the oligotrophic western South Atlantic. In order to examine the environmental influences on the sedimentary record the alkenone-based carbon isotopic fractionation (Ep) values were correlated with the overlying surface water concentrations of aqueous CO2 ([CO2(aq)]), phosphate, and nitrate. We found Ep positively correlated with 1/[CO2(aq)] and negatively correlated with [PO43-] and [NO3-]. However, the relationship between Ep and 1/[CO2(aq)] is opposite of what is expected from a [CO2(aq)] controlled, diffusive uptake model. Instead, our findings support the theory of Bidigare et al. (1997, doi:10.1029/96GB03939) that the isotopic fractionation in haptophytes is related to nutrient-limited growth rates. The relatively high variability of the Ep-[PO4] relationship in regions with low surface water nutrient concentrations indicates that here other environmental factors also affect the isotopic signal. These factors might be variations in other growth-limiting resources such as light intensity or micronutrient concentrations.
Resumo:
Mercury (Hg) natural biogeochemical cycle is complex and a significant portion of biological and chemical transformation occurs in the marine environment. To better understand the presence and abundance of Hg species in the remote ocean regions, waters of South Atlantic Ocean along 40°S parallel were investigated during UK-GEOTRACES cruise GA10. Total mercury (THg), methylated mercury (MeHg), and dissolved gaseous mercury (DGM) concentrations were determined. The concentrations were very low in the range of pg/L (femtomolar). All Hg species had higher concentration in western than in eastern basin. THg did not appear to be a useful geotracer. Elevated methylated Hg species were commonly associated with low-oxygen water masses and occasionally with peaks of chlorophyll a, both involved with carbon (re)cycling. The overall highest MeHg concentrations were observed in themixed layer (500m) and in the vicinity of the Gough Island. Conversely, DGM concentrations showed distinct layering and differed between the water masses in a nutrient-like manner. DGM was lowest at surface, indicating degassing to the atmosphere, and was highest in the Upper Circumpolar Deep Water, where the oxygen concentration was lowest. DGM increased also in Antarctic Bottom Water. At one station, dimethylmercury was determined and showed increase in region with lowest oxygen saturation. Altogether, our data indicate that the South Atlantic Ocean could be a source of Hg to the atmosphere and that its biogeochemical transformations depend primarily upon carbon cycling and are thereby additionally prone to global ocean change.