993 resultados para weekly self-scheduling
Resumo:
With advancement in computer science and information technology, computing systems are becoming increasingly more complex with an increasing number of heterogeneous components. They are thus becoming more difficult to monitor, manage, and maintain. This process has been well known as labor intensive and error prone. In addition, traditional approaches for system management are difficult to keep up with the rapidly changing environments. There is a need for automatic and efficient approaches to monitor and manage complex computing systems. In this paper, we propose an innovative framework for scheduling system management by combining Autonomic Computing (AC) paradigm, Multi-Agent Systems (MAS) and Nature Inspired Optimization Techniques (NIT). Additionally, we consider the resolution of realistic problems. The scheduling of a Cutting and Treatment Stainless Steel Sheet Line will be evaluated. Results show that proposed approach has advantages when compared with other scheduling systems
Resumo:
This paper proposes a novel agent-based approach to Meta-Heuristics self-configuration. Meta-heuristics are algorithms with parameters which need to be set up as efficient as possible in order to unsure its performance. A learning module for self-parameterization of Meta-heuristics (MH) in a Multi-Agent System (MAS) for resolution of scheduling problems is proposed in this work. The learning module is based on Case-based Reasoning (CBR) and two different integration approaches are proposed. A computational study is made for comparing the two CBR integration perspectives. Finally, some conclusions are reached and future work outlined.
Resumo:
Current Manufacturing Systems challenges due to international economic crisis, market globalization and e-business trends, incites the development of intelligent systems to support decision making, which allows managers to concentrate on high-level tasks management while improving decision response and effectiveness towards manufacturing agility. This paper presents a novel negotiation mechanism for dynamic scheduling based on social and collective intelligence. Under the proposed negotiation mechanism, agents must interact and collaborate in order to improve the global schedule. Swarm Intelligence (SI) is considered a general aggregation term for several computational techniques, which use ideas and inspiration from the social behaviors of insects and other biological systems. This work is primarily concerned with negotiation, where multiple self-interested agents can reach agreement over the exchange of operations on competitive resources. Experimental analysis was performed in order to validate the influence of negotiation mechanism in the system performance and the SI technique. Empirical results and statistical evidence illustrate that the negotiation mechanism influence significantly the overall system performance and the effectiveness of Artificial Bee Colony for makespan minimization and on the machine occupation maximization.
Resumo:
Twenty-four parents of oppositional preschoolers were randomly assigned to either a self-directed behavioral family intervention condition (SD) or to a waitlist control group (WL). The self-directed parent training program based on self-regulation principles, consisted of a written information package and weekly telephone consultations for 10 weeks. At posttest, in comparison to the WL group, children in the SD group had lower levels of behavior problems on parent report measures of child behavior. At posttreatment, parents in the SD condition reported increased levels of parenting competence and lower levels of dysfunctional parenting practices as compared to parents in the WL condition. In addition, mothers reported lower levels of anxiety, depression, and stress as compared to mothers in the WL condition at posttreatment. Using mother's reports, gains in child behavior and parenting practices achieved at posttreatment were maintained at 4-month follow-up.
Resumo:
In this paper we present a Self-Optimizing module, inspired on Autonomic Computing, acquiring a scheduling system with the ability to automatically select a Meta-heuristic to use in the optimization process, so as its parameterization. Case-based Reasoning was used so the system may be able of learning from the acquired experience, in the resolution of similar problems. From the obtained results we conclude about the benefit of its use.
Resumo:
This paper addresses the problem of Biological Inspired Optimization Techniques (BIT) parameterization, considering the importance of this issue in the design of BIT especially when considering real world situations, subject to external perturbations. A learning module with the objective to permit a Multi-Agent Scheduling System to automatically select a Meta-heuristic and its parameterization to use in the optimization process is proposed. For the learning process, Casebased Reasoning was used, allowing the system to learn from experience, in the resolution of similar problems. Analyzing the obtained results we conclude about the advantages of its use.
Resumo:
In this paper, we foresee the use of Multi-Agent Systems for supporting dynamic and distributed scheduling in Manufacturing Systems. We also envisage the use of Autonomic properties in order to reduce the complexity of managing systems and human interference. By combining Multi-Agent Systems, Autonomic Computing, and Nature Inspired Techniques we propose an approach for the resolution of dynamic scheduling problem, with Case-based Reasoning Learning capabilities. The objective is to permit a system to be able to automatically adopt/select a Meta-heuristic and respective parameterization considering scheduling characteristics. From the comparison of the obtained results with previous results, we conclude about the benefits of its use.
Resumo:
We describe a novel approach to scheduling resolution by combining Autonomic Computing (AC), Multi-Agent Systems (MAS) and Nature Inspired Optimization Techniques (NIT). Autonomic Computing has emerged as paradigm aiming at embedding applications with a management structure similar to a central nervous system. A natural Autonomic Computing evolution in relation to Current Computing is to provide systems with Self-Managing ability with a minimum human interference. In this paper we envisage the use of Multi-Agent Systems paradigm for supporting dynamic and distributed scheduling in Manufacturing Systems with Autonomic properties, in order to reduce the complexity of managing systems and human interference. Additionally, we consider the resolution of realistic problems. The scheduling of a Cutting and Treatment Stainless Steel Sheet Line will be evaluated. Results show that proposed approach has advantages when compared with other scheduling systems.
Resumo:
This paper presents a modified Particle Swarm Optimization (PSO) methodology to solve the problem of energy resources management with high penetration of distributed generation and Electric Vehicles (EVs) with gridable capability (V2G). The objective of the day-ahead scheduling problem in this work is to minimize operation costs, namely energy costs, regarding he management of these resources in the smart grid context. The modifications applied to the PSO aimed to improve its adequacy to solve the mentioned problem. The proposed Application Specific Modified Particle Swarm Optimization (ASMPSO) includes an intelligent mechanism to adjust velocity limits during the search process, as well as self-parameterization of PSO parameters making it more user-independent. It presents better robustness and convergence characteristics compared with the tested PSO variants as well as better constraint handling. This enables its use for addressing real world large-scale problems in much shorter times than the deterministic methods, providing system operators with adequate decision support and achieving efficient resource scheduling, even when a significant number of alternative scenarios should be considered. The paper includes two realistic case studies with different penetration of gridable vehicles (1000 and 2000). The proposed methodology is about 2600 times faster than Mixed-Integer Non-Linear Programming (MINLP) reference technique, reducing the time required from 25 h to 36 s for the scenario with 2000 vehicles, with about one percent of difference in the objective function cost value.
Resumo:
The elastic behavior of the demand consumption jointly used with other available resources such as distributed generation (DG) can play a crucial role for the success of smart grids. The intensive use of Distributed Energy Resources (DER) and the technical and contractual constraints result in large-scale non linear optimization problems that require computational intelligence methods to be solved. This paper proposes a Particle Swarm Optimization (PSO) based methodology to support the minimization of the operation costs of a virtual power player that manages the resources in a distribution network and the network itself. Resources include the DER available in the considered time period and the energy that can be bought from external energy suppliers. Network constraints are considered. The proposed approach uses Gaussian mutation of the strategic parameters and contextual self-parameterization of the maximum and minimum particle velocities. The case study considers a real 937 bus distribution network, with 20310 consumers and 548 distributed generators. The obtained solutions are compared with a deterministic approach and with PSO without mutation and Evolutionary PSO, both using self-parameterization.
Resumo:
While Cluster-Tree network topologies look promising for WSN applications with timeliness and energy-efficiency requirements, we are yet to witness its adoption in commercial and academic solutions. One of the arguments that hinder the use of these topologies concerns the lack of flexibility in adapting to changes in the network, such as in traffic flows. This paper presents a solution to enable these networks with the ability to self-adapt their clusters’ duty-cycle and scheduling, to provide increased quality of service to multiple traffic flows. Importantly, our approach enables a network to change its cluster scheduling without requiring long inaccessibility times or the re-association of the nodes. We show how to apply our methodology to the case of IEEE 802.15.4/ZigBee cluster-tree WSNs without significant changes to the protocol. Finally, we analyze and demonstrate the validity of our methodology through a comprehensive simulation and experimental validation using commercially available technology on a Structural Health Monitoring application scenario.
Resumo:
This paper presents a modified Particle Swarm Optimization (PSO) methodology to solve the problem of energy resources management with high penetration of distributed generation and Electric Vehicles (EVs) with gridable capability (V2G). The objective of the day-ahead scheduling problem in this work is to minimize operation costs, namely energy costs, regarding the management of these resources in the smart grid context. The modifications applied to the PSO aimed to improve its adequacy to solve the mentioned problem. The proposed Application Specific Modified Particle Swarm Optimization (ASMPSO) includes an intelligent mechanism to adjust velocity limits during the search process, as well as self-parameterization of PSO parameters making it more user-independent. It presents better robustness and convergence characteristics compared with the tested PSO variants as well as better constraint handling. This enables its use for addressing real world large-scale problems in much shorter times than the deterministic methods, providing system operators with adequate decision support and achieving efficient resource scheduling, even when a significant number of alternative scenarios should be considered. The paper includes two realistic case studies with different penetration of gridable vehicles (1000 and 2000). The proposed methodology is about 2600 times faster than Mixed-Integer Non-Linear Programming (MINLP) reference technique, reducing the time required from 25 h to 36 s for the scenario with 2000 vehicles, with about one percent of difference in the objective function cost value.
Resumo:
6th Real-Time Scheduling Open Problems Seminar (RTSOPS 2015), Lund, Sweden.
Resumo:
BACKGROUND: Good adherence to antiretroviral therapy (ART) is critical for successful HIV treatment. However, some patients remain virologically suppressed despite suboptimal adherence. We hypothesized that this could result from host genetic factors influencing drug levels. METHODS: Eligible individuals were Caucasians treated with efavirenz (EFV) and/or boosted lopinavir (LPV/r) with self-reported poor adherence, defined as missing doses of ART at least weekly for more than 6 months. Participants were genotyped for single nucleotide polymorphisms (SNPs) in candidate genes previously reported to decrease EFV (rs3745274, rs35303484, rs35979566 in CYP2B6) and LPV/r clearance (rs4149056 in SLCO1B1, rs6945984 in CYP3A, rs717620 in ABCC2). Viral suppression was defined as having HIV-1 RNA <400 copies/ml throughout the study period. RESULTS: From January 2003 until May 2009, 37 individuals on EFV (28 suppressed and 9 not suppressed) and 69 on LPV/r (38 suppressed and 31 not suppressed) were eligible. The poor adherence period was a median of 32 weeks with 18.9% of EFV and 20.3% of LPV/r patients reporting missed doses on a daily basis. The tested SNPs were not determinant for viral suppression. Reporting missing >1 dose/week was associated with a lower probability of viral suppression compared to missing 1 dose/week (EFV: odds ratio (OR) 0.11, 95% confidence interval (CI): 0.01-0.99; LPV/r: OR 0.29, 95% CI: 0.09-0.94). In both groups, the probability of remaining suppressed increased with the duration of continuous suppression prior to the poor adherence period (EFV: OR 3.40, 95% CI: 0.62-18.75; LPV/r: OR 5.65, 95% CI: 1.82-17.56). CONCLUSIONS: The investigated genetic variants did not play a significant role in the sustained viral suppression of individuals with suboptimal adherence. Risk of failure decreased with longer duration of viral suppression in this population.
Resumo:
The present study applies a micro-level perspective on how within-individual differences in motivational and social-cognitive factors affect the weekly fluctuations of engagement in proactive career behaviors among a group of 67 German university students. Career self-efficacy beliefs, perceived career barriers, experienced social career support, positive and negative emotions, and career engagement were assessed weekly for 13 consecutive weeks. Hierarchical linear regression analyses showed that above-average levels of career engagement within individuals were predicted by higher than average perceived social support and positive emotions during a given week. Conversely, within-individual differences in self-efficacy, barriers, and negative emotions had no effect. The results suggest that career interventions should provide boosts in social support and positive emotions.