963 resultados para weather stations
Resumo:
Robert Falcon Scott and his companions reached the South Pole in January of 1912, only to die on their return journey at a remote site on the Ross Ice Shelf, about 170 miles from their base camp on the coast. Numerous contributing causes for their deaths have been proposed, but it has been assumed that the cold temperatures they reported encountering on the Ross Ice Shelf, near 82–80°S during their northward trek toward safety, were not unusual. The weather in the region where they perished on their unassisted trek by foot from the Pole remained undocumented for more than half a century, but it has now been monitored by multiple automated weather stations for more than a decade. The data recorded by Scott and his men from late February to March 19, 1912, display daily temperature minima that were on average 10 to 20°F below those obtained in the same region and season since routine modern observations began in 1985. Only 1 year in the available 15 years of measurements from the location where Scott and his men perished displays persistent cold temperatures at this time of year close to those reported in 1912. These remarkably cold temperatures likely contributed substantially to the exhaustion and frostbite Scott and his companions endured, and their deaths were therefore due, at least in part, to the unusual weather conditions they endured during their cold march across the Ross Ice Shelf of Antarctica.
Resumo:
The sheer volume of citizen weather data collected and uploaded to online data hubs is immense. However as with any citizen data it is difficult to assess the accuracy of the measurements. Within this project we quantify just how much data is available, where it comes from, the frequency at which it is collected, and the types of automatic weather stations being used. We also list the numerous possible sources of error and uncertainty within citizen weather observations before showing evidence of such effects in real data. A thorough intercomparison field study was conducted, testing popular models of citizen weather stations. From this study we were able to parameterise key sources of bias. Most significantly the project develops a complete quality control system through which citizen air temperature observations can be passed. The structure of this system was heavily informed by the results of the field study. Using a Bayesian framework the system learns and updates its estimates of the calibration and radiation-induced biases inherent to each station. We then show the benefit of correcting for these learnt biases over using the original uncorrected data. The system also attaches an uncertainty estimate to each observation, which would provide real world applications that choose to incorporate such observations with a measure on which they may base their confidence in the data. The system relies on interpolated temperature and radiation observations from neighbouring professional weather stations for which a Bayesian regression model is used. We recognise some of the assumptions and flaws of the developed system and suggest further work that needs to be done to bring it to an operational setting. Such a system will hopefully allow applications to leverage the additional value citizen weather data brings to longstanding professional observing networks.
Resumo:
In 2001, a weather and climate monitoring network was established along the temperature and aridity gradient between the sub-humid Moroccan High Atlas Mountains and the former end lake of the Middle Drâa in a pre-Saharan environment. The highest Automated Weather Stations (AWS) was installed just below the M'Goun summit at 3850 m, the lowest station Lac Iriki was at 450 m. This network of 13 AWS stations was funded and maintained by the German IMPETUS (BMBF Grant 01LW06001A, North Rhine-Westphalia Grant 313-21200200) project and since 2011 five stations were further maintained by the GERMAN DFG Fennec project (FI 786/3-1), this way some stations of the AWS network provided data for almost 12 years from 2001-2012. Standard meteorological variables such as temperature, humidity, and wind were measured at an altitude of 2 m above ground. Other meteorological variables comprise precipitation, station pressure, solar irradiance, soil temperature at different depths and for high mountain station snow water equivalent. The stations produced data summaries for 5-minute-precipitation-data, 10- or 15-minute-data and a daily summary of all other variables. This network is a unique resource of multi-year weather data in the remote semi-arid to arid mountain region of the Saharan flank of the Atlas Mountains. The network is described in Schulz et al. (2010) and its further continuation until 2012 is briefly discussed in Redl et al. (2015, doi:10.1175/MWR-D-15-0223.1) and Redl et al. (2016, doi:10.1002/2015JD024443).
Resumo:
Twelve year datasets of weekly atmospheric concentrations of alpha- and gamma-HCH were compared between the two Arctic monitoring stations of Alert, Nunavut, Canada, and Zeppelin Mountain, Svalbard, Norway. Time-series analysis was conducted with the use of dynamic harmonic regression (DHR), which provided a very good model fit, to examine both the seasonal behaviour in these isomers and the longer-term, underlying trends. Strong spatial differences were not apparent between the two sites, although subtle differences in seasonal behaviour and composition were identified. For example, the composition of gamma-HCH to total HCH (alpha + gamma) was greater at Zeppelin compared to Alert, probably reflecting this site's proximity to major use regions of lindane. Pronounced seasonality in air concentrations for gamma-HCH was marked by a 'spring maximum event' (SME), confirming earlier studies. For alpha-HCH, the SME was much weaker and only evident at Alert, whereas at Zeppelin, seasonal fluctuations for alpha-HCH were marked by elevated concentrations in summer and lower concentrations during winter, with this pattern most apparent for the years after 2000. We attribute this difference in spatial and temporal patterns to the Arctic oscillation. A similar climatic pattern was not evident at either site in the gamma-HCH data. Seasonally adjusted, long-term trends revealed declining concentrations at both sites for alpha- and gamma-HCH over the entire time-series. Recent legislation affecting lindane use appear to account for this decline in gamma-HCH, with little evidence of a delay or 'lag' between the banning of lindane in Europe (a main source region) or Canada, and a decline in air concentrations observed at both Arctic sites.
Resumo:
A developed and sustainable agriculture requires a permanent and reliable monitoring of climatic/ meteorological elements in (agro) meteorological stations which should be located close to agricultural, silvicultural or pastoral activities. An adequate network of meteorological stations is then a necessary condition to support innovation and development in any country. Developing countries, mainly those with a history of frequent conflicts, presents deficient number of weather stations, often poorly composed and improperly distributed within their territories, and without a regular operation that allows continuity of records for a sufficiently long period of time. The objective of this work was to build a network of meteorological and agro-meteorological stations in East Timor. To achieve this goal, the number and location of pre-existing stations, their structure and composition (number and type of sensors, communication system,… ), the administrative division of the country and the available agro-ecological zoning, the agricultural and forestry practices in the country, the existing centres for the agricultural research and the history of the weathers records were taken into account. Several troubles were found (some of the automatic stations were assembled incorrectly, others stations duplicated information regarding the same agricultural area, vast areas with relevant agro-ecological representativeness were not monitored …). It was proposed the elimination of 11 existing stations, the relocation of 7 new stations in places not covered until then, the automation of 3 manual meteorological stations. Two networks were then purposed, a major with 15 agro-meteorological stations (all automatized) and one other secondary composed by 32 weather stations (only two were manual). The set of the 47 stations corresponded to a density of 329 km2/station. The flexibility in the composition of each of the networks was safeguarded and intends to respond effectively to any substantive change in the conditions in a country in constant change. It was also discussed the national coverage by these networks under a “management concept for weather stations”.
Resumo:
The aim of this study was to establish a digital elevation model and its horizontal resolution to interpolate the annual air temperature for the Alagoas State by means of multiple linear regression models. A multiple linear regression model was adjusted to series (11 to 34 years) of annual air temperatures obtained from 28 weather stations in the states of Alagoas, Bahia, Pernambuco and Sergipe, in the Northeast of Brazil, in function of latitude, longitude and altitude. The elevation models SRTM and GTOPO30 were used in the analysis, with original resolutions of 90 and 900 m, respectively. The SRTM was resampled for horizontal resolutions of 125, 250, 500, 750 and 900 m. For spatializing the annual mean air temperature for the state of Alagoas, a multiple linear regression model was used for each elevation and spatial resolution on a grid of the latitude and longitude. In Alagoas, estimates based on SRTM data resulted in a standard error of estimate (0.57 degrees C) and dispersion (r(2) = 0.62) lower than those obtained from GTOPO30 (0.93 degrees C and 0.20). In terms of SRTM resolutions, no significant differences were observed between the standard error (0.55 degrees C; 750 m - 0.58 degrees C; 250m) and dispersion (0.60; 500 m - 0.65; 750 m) estimates. The spatialization of annual air temperature in Alagoas, via multiple regression models applied to SRTM data showed higher concordance than that obtained with the GTOPO30, independent of the spatial resolution.
Resumo:
Leaf wetness duration (LWD) is related to plant disease occurrence and is therefore a key parameter in agrometeorology. As LWD is seldom measured at standard weather stations, it must be estimated in order to ensure the effectiveness of warning systems and the scheduling of chemical disease control. Among the models used to estimate LWD, those that use physical principles of dew formation and dew and/or rain evaporation have shown good portability and sufficiently accurate results for operational use. However, the requirement of net radiation (Rn) is a disadvantage foroperational physical models, since this variable is usually not measured over crops or even at standard weather stations. With the objective of proposing a solution for this problem, this study has evaluated the ability of four models to estimate hourly Rn and their impact on LWD estimates using a Penman-Monteith approach. A field experiment was carried out in Elora, Ontario, Canada, with measurements of LWD, Rn and other meteorological variables over mowed turfgrass for a 58 day period during the growing season of 2003. Four models for estimating hourly Rn based on different combinations of incoming solar radiation (Rg), airtemperature (T), relative humidity (RH), cloud cover (CC) and cloud height (CH), were evaluated. Measured and estimated hourly Rn values were applied in a Penman-Monteith model to estimate LWD. Correlating measured and estimated Rn, we observed that all models performed well in terms of estimating hourly Rn. However, when cloud data were used the models overestimated positive Rn and underestimated negative Rn. When only Rg and T were used to estimate hourly Rn, the model underestimated positive Rn and no tendency was observed for negative Rn. The best performance was obtained with Model I, which presented, in general, the smallest mean absolute error (MAE) and the highest C-index. When measured LWD was compared to the Penman-Monteith LWD, calculated with measured and estimated Rn, few differences were observed. Both precision and accuracy were high, with the slopes of the relationships ranging from 0.96 to 1.02 and R-2 from 0.85 to 0.92, resulting in C-indices between 0.87 and 0.93. The LWD mean absolute errors associated with Rn estimates were between 1.0 and 1.5h, which is sufficient for use in plant disease management schemes.
Resumo:
Coffee cultivation via central-pivot fertigation can lead to fertilizer losses by soil profile internal drainage when water application is excessive and soils have low water retention and cation adsorption capacities. This study analyses the deep water losses from the top 1 m sandy soil layer of east Bahia, Brazil, cultivated with coffee at a high technology level (central-pivot fertigation), using above normal N fertilizer rates. The deep drainage (Q) estimation is made through the application of a climatologic water balance (CWB) program having as input direct measures of irrigation and rainfall, climatological data from weather stations, and measured soil water retention characteristics. The aim of the study is to contribute to the understanding of the hydric regime of coffee crops managed by central-pivot irrigation, analyzing three scenarios (Sc): i) rainfall only, ii) rainfall and irrigation full year, and iii) rainfall and irrigation dry season only. Annual Q values for the 2008/2009 agricultural year were: Sc i = 811.5 mm; Sc ii = 1010.5 mm; and Sc iii = 873.1 mm, so that the irrigation interruption in the wet season reduced Q by 15.7%, without the appearance of water deficit periods. Results show that the use of the CWB program is a convenient tool for the evaluation of Q under the cited conditions.
Resumo:
Dissertation submitted in partial fulfilment of the requirements for the Degree of Master of Science in Geospatial Technologies
Resumo:
During the last decade Mongolia’s region was characterized by a rapid increase of both severity and frequency of drought events, leading to pasture reduction. Drought monitoring and assessment plays an important role in the region’s early warning systems as a way to mitigate the negative impacts in social, economic and environmental sectors. Nowadays it is possible to access information related to the hydrologic cycle through remote sensing, which provides a continuous monitoring of variables over very large areas where the weather stations are sparse. The present thesis aimed to explore the possibility of using NDVI as a potential drought indicator by studying anomaly patterns and correlations with other two climate variables, LST and precipitation. The study covered the growing season (March to September) of a fifteen year period, between 2000 and 2014, for Bayankhongor province in southwest Mongolia. The datasets used were MODIS NDVI, LST and TRMM Precipitation, which processing and analysis was supported by QGIS software and Python programming language. Monthly anomaly correlations between NDVI-LST and NDVI-Precipitation were generated as well as temporal correlations for the growing season for known drought years (2001, 2002 and 2009). The results show that the three variables follow a seasonal pattern expected for a northern hemisphere region, with occurrence of the rainy season in the summer months. The values of both NDVI and precipitation are remarkably low while LST values are high, which is explained by the region’s climate and ecosystems. The NDVI average, generally, reached higher values with high precipitation values and low LST values. The year of 2001 was the driest year of the time-series, while 2003 was the wet year with healthier vegetation. Monthly correlations registered weak results with low significance, with exception of NDVI-LST and NDVI-Precipitation correlations for June, July and August of 2002. The temporal correlations for the growing season also revealed weak results. The overall relationship between the variables anomalies showed weak correlation results with low significance, which suggests that an accurate answer for predicting drought using the relation between NDVI, LST and Precipitation cannot be given. Additional research should take place in order to achieve more conclusive results. However the NDVI anomaly images show that NDVI is a suitable drought index for Bayankhongor province.
Resumo:
This paper describes the application of the Soil and Water Assessment Tool (SWAT) model to the Maquoketa River watershed, located in northeast Iowa. The inputs to the model were obtained from the Environmental Protection Agency’s geographic information/database system called Better Assessment Science Integrating Point and Nonpoint Sources (BASINS). Climatic data from six weather stations located in and around the watershed, and measured streamflow data from a U.S. Geological Survey gage station at the watershed outlet were used in the sensitivity analysis of SWAT model parameters as well as its calibration and validation for watershed hydrology and streamflow. A sensitivity analysis was performed using an influence coefficient method to evaluate surface runoff and base flow variations in response to changes in model input hydrologic parameters. The curve number, evaporation compensation factor, and soil available water capacity were found to be the most sensitive parameters among eight selected parameters when applying SWAT to the Maquoketa River watershed. Model calibration, facilitated by the sensitivity analysis, was performed for the period 1988 through 1993, and validation was performed for 1982 through 1987. The model performance was evaluated by well-established statistical methods and was found to explain at least 86% and 69% of the variability in the measured stream flow data for the calibration and validation periods, respectively. This initial hydrologic modeling analysis will facilitate future applications of SWAT to the Maquoketa River watershed for various watershed analysis, including water quality.
Resumo:
Knowledge on the factors influencing water erosion is fundamental for the choice of the best land use practices. Rainfall, expressed by rainfall erosivity, is one of the most important factors of water erosion. The objective of this study was to determine rainfall erosivity and the return period of rainfall in the Coastal Plains region, near Aracruz, a town in the state of Espírito Santo, Brazil, based on available data. Rainfall erosivity was calculated based on historic rainfall data, collected from January 1998 to July 2004 at 5 min intervals, by automatic weather stations of the Aracruz Cellulose S.A company. A linear regression with individual rainfall and erosivity data was fit to obtain an equation that allowed data extrapolation to calculate individual erosivity for a 30-year period. Based on this data the annual average rainfall erosivity in Aracruz was 8,536 MJ mm ha-1 h-1 yr-1. Of the total annual rainfall erosivity 85 % was observed in the most critical period October to March. Annual erosive rains accounted for 38 % of the events causing erosion, although the runoff volume represented 88 % of the total. The annual average rainfall erosivity return period was estimated to be 3.4 years.
Resumo:
The purpose of this study was to adjust equations that establish relationships between rainfall events with different duration and data from weather stations in the state of Santa Catarina, Brazil. In this study, the relationships between different duration heavy rainfalls from 13 weather stations of Santa Catarina were analyzed. From series of maximum annual rainfalls, and using the Gumbel-Chow distribution, the maximum rainfall for durations between 5 min and 24 h were estimated considering return periods from 2 to 100 years. The data fit to the Gumbel-Chow model was verified by the Kolmogorov-Smirnov test at 5 % significance. The coefficients of Bell's equation were adjusted to estimate the relationship between rainfall duration t (min) and the return period T (y) in relation to the maximum rainfall with a duration of 1 hour and a 10 year return period. Likewise, the coefficients of Bell's equation were adjusted based on the maximum rainfall with a duration of 1 day and a 10 year return period. The results showed that these relationships are viable to estimate short-duration rainfall events at locations where there are no rainfall records.
Resumo:
Winter weather in Iowa is often unpredictable and can have an adverse impact on traffic flow. The Iowa Department of Transportation (Iowa DOT) attempts to lessen the impact of winter weather events on traffic speeds with various proactive maintenance operations. In order to assess the performance of these maintenance operations, it would be beneficial to develop a model for expected speed reduction based on weather variables and normal maintenance schedules. Such a model would allow the Iowa DOT to identify situations in which speed reductions were much greater than or less than would be expected for a given set of storm conditions, and make modifications to improve efficiency and effectiveness. The objective of this work was to predict speed changes relative to baseline speed under normal conditions, based on nominal maintenance schedules and winter weather covariates (snow type, temperature, and wind speed), as measured by roadside weather stations. This allows for an assessment of the impact of winter weather covariates on traffic speed changes, and estimation of the effect of regular maintenance passes. The researchers chose events from Adair County, Iowa and fit a linear model incorporating the covariates mentioned previously. A Bayesian analysis was conducted to estimate the values of the parameters of this model. Specifically, the analysis produces a distribution for the parameter value that represents the impact of maintenance on traffic speeds. The effect of maintenance is not a constant, but rather a value that the researchers have some uncertainty about and this distribution represents what they know about the effects of maintenance. Similarly, examinations of the distributions for the effects of winter weather covariates are possible. Plots of observed and expected traffic speed changes allow a visual assessment of the model fit. Future work involves expanding this model to incorporate many events at multiple locations. This would allow for assessment of the impact of winter weather maintenance across various situations, and eventually identify locations and times in which maintenance could be improved.
Resumo:
Due to the advances in sensor networks and remote sensing technologies, the acquisition and storage rates of meteorological and climatological data increases every day and ask for novel and efficient processing algorithms. A fundamental problem of data analysis and modeling is the spatial prediction of meteorological variables in complex orography, which serves among others to extended climatological analyses, for the assimilation of data into numerical weather prediction models, for preparing inputs to hydrological models and for real time monitoring and short-term forecasting of weather.In this thesis, a new framework for spatial estimation is proposed by taking advantage of a class of algorithms emerging from the statistical learning theory. Nonparametric kernel-based methods for nonlinear data classification, regression and target detection, known as support vector machines (SVM), are adapted for mapping of meteorological variables in complex orography.With the advent of high resolution digital elevation models, the field of spatial prediction met new horizons. In fact, by exploiting image processing tools along with physical heuristics, an incredible number of terrain features which account for the topographic conditions at multiple spatial scales can be extracted. Such features are highly relevant for the mapping of meteorological variables because they control a considerable part of the spatial variability of meteorological fields in the complex Alpine orography. For instance, patterns of orographic rainfall, wind speed and cold air pools are known to be correlated with particular terrain forms, e.g. convex/concave surfaces and upwind sides of mountain slopes.Kernel-based methods are employed to learn the nonlinear statistical dependence which links the multidimensional space of geographical and topographic explanatory variables to the variable of interest, that is the wind speed as measured at the weather stations or the occurrence of orographic rainfall patterns as extracted from sequences of radar images. Compared to low dimensional models integrating only the geographical coordinates, the proposed framework opens a way to regionalize meteorological variables which are multidimensional in nature and rarely show spatial auto-correlation in the original space making the use of classical geostatistics tangled.The challenges which are explored during the thesis are manifolds. First, the complexity of models is optimized to impose appropriate smoothness properties and reduce the impact of noisy measurements. Secondly, a multiple kernel extension of SVM is considered to select the multiscale features which explain most of the spatial variability of wind speed. Then, SVM target detection methods are implemented to describe the orographic conditions which cause persistent and stationary rainfall patterns. Finally, the optimal splitting of the data is studied to estimate realistic performances and confidence intervals characterizing the uncertainty of predictions.The resulting maps of average wind speeds find applications within renewable resources assessment and opens a route to decrease the temporal scale of analysis to meet hydrological requirements. Furthermore, the maps depicting the susceptibility to orographic rainfall enhancement can be used to improve current radar-based quantitative precipitation estimation and forecasting systems and to generate stochastic ensembles of precipitation fields conditioned upon the orography.