946 resultados para water supply system
Resumo:
Over the last two decades, Jordan has suffered a chronic water crisis, and is the tenth most water-scarce nation on Earth. Such water stress has been well illustrated in the case of Greater Amman, the capital, which has grown dramatically from a population of around 2000 in the 1920s, to 2.17 million today. One of the distinctive characteristics of the water supply regime of Greater Amman is that since 1987 it has been based on a system of rationing, with households receiving water once a week for various durations. Amman is highly polarized socio-economically, and by means of household surveys, both quantitative and qualitative, conducted in high- and low-income divisions of the city, a detailed empirical evaluation of the storage and use of water, the strategies used by households to manage water and overall satisfaction with water supply issues is provided in this paper, looking specifically at issues of social equity. The analysis demonstrates the social and economic costs of water rationing and consequent management to be high, as well as emphasizing that issues of water quality are of central importance to all consumers regardless of their socio-economic status within the city.
Resumo:
An investigation into the speciation and occurrence of nine haloacetic acids (HAAs) was conducted during the period of April 2007 to March 2008 and involved three drinking water supply systems in England, which were chosen to represent a range of source water conditions; these were an upland surface water, a lowland surface water and a groundwater. Samples were collected seasonally from the water treatment plants and at different locations in the distribution systems. The highest HAA concentrations occurred in the upland surface water system, with an average total HAA concentration of 21.3 μg/L. The lowest HAA levels were observed in the groundwater source, with a mean concentration of 0.6 μg/L. Seasonal variations were significant in the HAA concentrations; the highest total HAA concentrations were found during the autumn, when the concentrations were approximately two times higher than in winter and spring. HAA speciation varied among the water sources, with dichloroacetic acid and trichloroacetic acid dominant in the lowland surface water system and brominated species dominant in the upland surface water system. There was a strong correlation between trihalomethanes and HAAs when considering all samples from the three systems in the same data set (r2=0.88); however, the correlation was poor/moderate when considering each system independently.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
In the Dominican Republic economic growth in the past twenty years has not yielded sufficient improvement in access to drinking water services, especially in rural areas where 1.5 million people do not have access to an improved water source (WHO, 2006). Worldwide, strategic development planning in the rural water sector has focused on participatory processes and the use of demand filters to ensure that service levels match community commitment to post-project operation and maintenance. However studies have concluded that an alarmingly high percentage of drinking water systems (20-50%) do not provide service at the design levels and/or fail altogether (up to 90%): BNWP (2009), Annis (2006), and Reents (2003). World Bank, USAID, NGOs, and private consultants have invested significant resources in an effort to determine what components make up an “enabling environment” for sustainable community management of rural water systems (RWS). Research has identified an array of critical factors, internal and external to the community, which affect long term sustainability of water services. Different frameworks have been proposed in order to better understand the linkages between individual factors and sustainability of service. This research proposes a Sustainability Analysis Tool to evaluate the sustainability of RWS, adapted from previous relevant work in the field to reflect the realities in the Dominican Republic. It can be used as a diagnostic tool for government entities and development organizations to characterize the needs of specific communities and identify weaknesses in existing training regimes or support mechanisms. The framework utilizes eight indicators in three categories (Organization/Management, Financial Administration, and Technical Service). Nineteen independent variables are measured resulting in a score of sustainability likely (SL), possible (SP), or unlikely (SU) for each of the eight indicators. Thresholds are based upon benchmarks from the DR and around the world, primary data collected during the research, and the author’s 32 months of field experience. A final sustainability score is calculated using weighting factors for each indicator, derived from Lockwood (2003). The framework was tested using a statistically representative geographically stratified random sample of 61 water systems built in the DR by initiatives of the National Institute of Potable Water (INAPA) and Peace Corps. The results concluded that 23% of sample systems are likely to be sustainable in the long term, 59% are possibly sustainable, and for 18% it is unlikely that the community will be able to overcome any significant challenge. Communities that were scored as unlikely sustainable perform poorly in participation, financial durability, and governance while the highest scores were for system function and repair service. The Sustainability Analysis Tool results are verified by INAPA and PC reports, evaluations, and database information, as well as, field observations and primary data collected during the surveys. Future research will analyze the nature and magnitude of relationships between key factors and the sustainability score defined by the tool. Factors include: gender participation, legal status of water committees, plumber/operator remuneration, demand responsiveness, post construction support methodologies, and project design criteria.
Resumo:
More than eighteen percent of the world’s population lives without reliable access to clean water, forced to walk long distances to get small amounts of contaminated surface water. Carrying heavy loads of water long distances and ingesting contaminated water can lead to long-term health problems and even death. These problems affect the most vulnerable populations, women, children, and the elderly, more than anyone else. Water access is one of the most pressing issues in development today. Boajibu, a small village in Sierra Leone, where the author served in Peace Corps for two years, lacks access to clean water. Construction of a water distribution system was halted when a civil war broke out in 1992 and has not been continued since. The community currently relies on hand-dug and borehole wells that can become dirty during the dry season, which forces people to drink contaminated water or to travel a far distance to collect clean water. This report is intended to provide a design the system as it was meant to be built. The water system design was completed based on the taps present, interviews with local community leaders, local surveying, and points taken with a GPS. The design is a gravity-fed branched water system, supplied by a natural spring on a hill adjacent to Boajibu. The system’s source is a natural spring on a hill above Boajibu, but the flow rate of the spring is unknown. There has to be enough flow from the spring over a 24-hour period to meet the demands of the users on a daily basis, or what is called providing continuous flow. If the spring has less than this amount of flow, the system must provide intermittent flow, flow that is restricted to a few hours a day. A minimum flow rate of 2.1 liters per second was found to be necessary to provide continuous flow to the users of Boajibu. If this flow is not met, intermittent flow can be provided to the users. In order to aid the construction of a distribution system in the absence of someone with formal engineering training, a table was created detailing water storage tank sizing based on possible source flow rates. A builder can interpolate using the source flow rate found to get the tank size from the table. However, any flow rate below 2.1 liters per second cannot be used in the table. In this case, the builder should size the tank such that it can take in the water that will be supplied overnight, as all the water will be drained during the day because the users will demand more than the spring can supply through the night. In the developing world, there is often a problem collecting enough money to fund large infrastructure projects, such as a water distribution system. Often there is only enough money to add only one or two loops to a water distribution system. It is helpful to know where these one or two loops can be most effectively placed in the system. Various possible loops were designated for the Boajibu water distribution system and the Adaptive Greedy Heuristic Loop Addition Selection Algorithm (AGHLASA) was used to rank the effectiveness of the possible loops to construct. Loop 1 which was furthest upstream was selected because it benefitted the most people for the least cost. While loops which were further downstream were found to be less effective because they would benefit fewer people. Further studies should be conducted on the water use habits of the people of Boajibu to more accurately predict the demands that will be placed on the system. Further population surveying should also be conducted to predict population change over time so that the appropriate capacity can be built into the system to accommodate future growth. The flow at the spring should be measured using a V-notch weir and the system adjusted accordingly. Future studies can be completed adjusting the loop ranking method so that two users who may be using the water system for different lengths of time are not counted the same and vulnerable users are weighted more heavily than more robust users.
Resumo:
As continued global funding and coordination are allocated toward the improvement of access to safe sources of drinking water, alternative solutions may be necessary to expand implementation to remote communities. This report evaluates two technologies used in a small water distribution system in a mountainous region of Panama; solar powered pumping and flow-reducing discs. The two parts of the system function independently, but were both chosen for their ability to mitigate unique issues in the community. The design program NeatWork and flow-reducing discs were evaluated because they are tools taught to Peace Corps Volunteers in Panama. Even when ample water is available, mountainous terrains affect the pressure available throughout a water distribution system. Since the static head in the system only varies with the height of water in the tank, frictional losses from pipes and fittings must be exploited to balance out the inequalities caused by the uneven terrain. Reducing the maximum allowable flow to connections through the installation of flow-reducing discs can help to retain enough residual pressure in the main distribution lines to provide reliable service to all connections. NeatWork was calibrated to measured flow rates by changing the orifice coefficient (θ), resulting in a value of 0.68, which is 10-15% higher than typical values for manufactured flow-reducing discs. NeatWork was used to model various system configurations to determine if a single-sized flow-reducing disc could provide equitable flow rates throughout an entire system. There is a strong correlation between the optimum single-sized flow- reducing disc and the average elevation change throughout a water distribution system; the larger the elevation change across the system, the smaller the recommended uniform orifice size. Renewable energy can jump the infrastructure gap and provide basic services at a fraction of the cost and time required to install transmission lines. Methods for the assessment of solar powered pumping systems as a means for rural water supply are presented and assessed. It was determined that manufacturer provided product specifications can be used to appropriately design a solar pumping system, but care must be taken to ensure that sufficient water can be provided to the system despite variations in solar intensity.
Resumo:
This layer is a georeferenced raster image of the historic paper map entitled: Map of the city of New Orleans : showing proposed water distribution system, [by] Sewerage and Water Board New Orleans, LA.; Geo. G. Earl, genl. sup't. It was published by the Sewerage and Water Board New Orleans in 1902. Scale [ca. 1:50,900]. The image inside the map neatline is georeferenced to the surface of the earth and fit to the Louisiana State Plane Coordinate System, South NAD83 (in Feet) (Fipszone 1702). All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, or other information associated with the principal map. This map shows water distribution features such as existing and proposed water mains (with sizes), suction pipes, and water purification station sites. Also shows other features such as roads, canals, levees, drainage, cemeteries, Parish boundaries, and more. Shaded to show built-up and unbuilt areas for construction. This layer is part of a selection of digitally scanned and georeferenced historic maps from The Harvard Map Collection as part of the Imaging the Urban Environment project. Maps selected for this project represent major urban areas and cities of the world, at various time periods. These maps typically portray both natural and manmade features at a large scale. The selection represents a range of regions, originators, ground condition dates, scales, and purposes.
Resumo:
Bibliography: p. 4.
Resumo:
This paper presents a study on the implementation of Real-Time Pricing (RTP) based Demand Side Management (DSM) of water pumping at a clean water pumping station in Northern Ireland, with the intention of minimising electricity costs and maximising the usage of electricity from wind generation. A Genetic Algorithm (GA) was used to create pumping schedules based on system constraints and electricity tariff scenarios. Implementation of this method would allow the water network operator to make significant savings on electricity costs while also helping to mitigate the variability of wind generation.
Resumo:
This paper presents a study on the implementation of Real-Time Pricing (RTP) based Demand Side Management (DSM) of water pumping at a clean water pumping station in Northern Ireland, with the intention of minimising electricity costs and maximising the usage of electricity from wind generation. A Genetic Algorithm (GA) was used to create pumping schedules based on system constraints and electricity tariff scenarios. Implementation of this method would allow the water network operator to make significant savings on electricity costs while also helping to mitigate the variability of wind generation.
Resumo:
This paper presents a study on the implementation of Real-Time Pricing (RTP) based Demand Side Management (DSM) of water pumping at a clean water pumping station in Northern Ireland, with the intention of minimising electricity costs and maximising the usage of electricity from wind generation. A Genetic Algorithm (GA) was used to create pumping schedules based on system constraints and electricity tariff scenarios. Implementation of this method would allow the water network operator to make significant savings on electricity costs while also helping to mitigate the variability of wind generation.
Resumo:
Water systems in the Sultanate of Oman are inevitably exposed to varied threats and hazards due to both natural and man-made hazards. Natural disasters, especially tropical cyclone Gonu in 2007, cause immense damage to water supply systems in Oman. At the same time water loss from leaks is a major operational problem. This research developed an integrated approach to identify and rank the risks to the water sources, transmission pipelines and distribution networks in Oman and suggests appropriate mitigation measures. The system resilience was evaluated and an emergency response plan for the water supplies developed. The methodology involved mining the data held by the water supply utility for risk and resilience determination and operational data to support calculations of non-revenue water. Risk factors were identified, ranked and scored at a stakeholder workshop and the operational information required was principally gathered from interviews. Finally, an emergency response plan was developed by evaluating the risk and resilience factors. The risk analysis and assessment used a Coarse Risk Analysis (CRA) approach and risk scores were generated using a simple risk matrix based on WHO recommendations. The likelihoods and consequences of a wide range of hazardous events were identified through a key workshop and subsequent questionnaires. The thesis proposes a method of translating the detailed risk evaluations into resilience scores through a methodology used in transportation networks. A water audit indicated that the percentage of NRW in Oman is greater than 35% which is similar to other Gulf countries but high internationally. The principal strategy for managing NRW used in the research was the AWWA water audit method which includes free to use software and was found to be easy to apply in Oman. The research showed that risks to the main desalination processes can be controlled but the risk due to feed water quality might remain high even after implementing mitigation measures because the intake is close to an oil port with a significant risk of oil contamination and algal blooms. The most severe risks to transmission mains were found to be associated with pipe rather than pump failure. The systems in Oman were found to be moderately resilient, the resilience of desalination plants reasonably high but the transmission mains and pumping stations are very vulnerable. The integrated strategy developed in this study has a wide applicability, particularly in the Gulf area, which may have risks from exceptional events and will be experiencing NRW. Other developing countries may also experience such risks but with different magnitudes and the risk evaluation tables could provide a useful format for further work.
Resumo:
Access to improved potable water sources is recognized as one of the key factors in improving health and alleviating global poverty. In recently years, substantial investments have been made internationally in potable water infrastructure projects, allowing 2.3 billion people to gain access to potable water from 1990-2012. One such project was planned and installed in Solla, Togo, a rural village in the northern part of the country, from 2010-2012. Ethnographic studies revealed that, while the community has access to potable water, an estimated 45% of the village’s 1500 residents still rely on unprotected sources for drinking and cooking. Additionally, inequality in system use based on income level was revealed, with the higher income groups accessing the system more regularly than lower income groups. Cost, as well as the availability of cheaper sources, was identified as the main deterrent from using the new water distribution system. A new water-pricing scheme is investigated here with the intention of making the system accessible to a greater percentage of the population. Since 2012, a village-level water committee has been responsible for operations and maintenance (O&M), fulfilling the community management model that is recommended by many development theorists in order to create sustainable projects. The water committee received post-construction support, mostly in the form of technical support during system breakdowns, from the Togolese Ministry of Water and Sanitation (MWSVH). While this support has been valuable in maintaining a functional water supply system in Solla, the water committee still has managerial challenges, particularly with billing and fee collection. As a result, the water committee has only received 2% - 25% of the fees owed at each private connection and public tap stand, making their finances vulnerable when future repairs and capital replacements are necessary. A new management structure is proposed by the MWSVH that will pay utilities workers a wage and will hire an accountant in order to improve the local management and increase revenue. This proposal is analyzed under the new water pricing schemes that are presented. Initially, the rural water supply system was powered by a diesel-generator, but in 2013, a solar photo-voltaic power supply was installed. The new system proved a fiscal improvement for the village water committee, since it drastically reduced their annual O&M costs. However, the new system pumps a smaller volume of water on a daily basis and did not meet the community’s water needs during the dry season of 2014. A hydraulic network model was developed to investigate the system’s reliability under diesel-generator (DGPS) and solar photovoltaic (PVPS) power supplies. Additionally, a new system layout is proposed for the PVPS that allows pumping directly into the distribution line, circumventing the high head associated with pumping solely to the storage tank. It was determined that this new layout would allow for a greater volume of water to be provided to the demand points over the course of a day, meeting a greater fraction of the demand than with the current layout.