992 resultados para water monitoring


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Iowa Nutrient Reduction Strategy (NRS) is a research- and technology-based approach to assess and reduce nutrients—nitrogen and phosphorus—delivered to Iowa waterways and the Gulf of Mexico by 45 percent. To measure progress, researchers track many different factors, from inputs (e.g. funding) and the human domain (e.g. farmer perspectives) to land management (e.g. on-farm practices) and water quality. Monitoring Iowa streams provides valuable insight into measuring water quality progress and the reduction of surface water nutrient loss. The Iowa Nutrient Reduction Strategy (NRS) aims to reduce the load, or total amount (e.g. tons), of nutrients lost annually. Researchers calculate the load from water monitoring results, which measure concentration combined with stream flow.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Microbial pollution in water periodically affects human health in Australia, particularly in times of drought and flood. There is an increasing need for the control of waterborn microbial pathogens. Methods, allowing the determination of the origin of faecal contamination in water, are generally referred to as Microbial Source Tracking (MST). Various approaches have been evaluated as indicatorsof microbial pathogens in water samples, including detection of different microorganisms and various host-specific markers. However, until today there have been no universal MST methods that could reliably determine the source (human or animal) of faecal contamination. Therefore, the use of multiple approaches is frequently advised. MST is currently recognised as a research tool, rather than something to be included in routine practices. The main focus of this research was to develop novel and universally applicable methods to meet the demands for MST methods in routine testing of water samples. Escherichia coli was chosen initially as the object organism for our studies as, historically and globally, it is the standard indicator of microbial contamination in water. In this thesis, three approaches are described: single nucleotide polymorphism (SNP) genotyping, clustered regularly interspaced short palindromic repeats (CRISPR) screening using high resolution melt analysis (HRMA) methods and phage detection development based on CRISPR types. The advantage of the combination SNP genotyping and CRISPR genes has been discussed in this study. For the first time, a highly discriminatory single nucleotide polymorphism interrogation of E. coli population was applied to identify the host-specific cluster. Six human and one animal-specific SNP profile were revealed. SNP genotyping was successfully applied in the field investigations of the Coomera watershed, South-East Queensland, Australia. Four human profiles [11], [29], [32] and [45] and animal specific SNP profile [7] were detected in water. Two human-specific profiles [29] and [11] were found to be prevalent in the samples over a time period of years. The rainfall (24 and 72 hours), tide height and time, general land use (rural, suburban), seasons, distance from the river mouth and salinity show a lack of relashionship with the diversity of SNP profiles present in the Coomera watershed (p values > 0.05). Nevertheless, SNP genotyping method is able to identify and distinquish between human- and non-human specific E. coli isolates in water sources within one day. In some samples, only mixed profiles were detected. To further investigate host-specificity in these mixed profiles CRISPR screening protocol was developed, to be used on the set of E. coli, previously analysed for SNP profiles. CRISPR loci, which are the pattern of previous DNA coliphages attacks, were considered to be a promising tool for detecting host-specific markers in E. coli. Spacers in CRISPR loci could also reveal the dynamics of virulence in E. coli as well in other pathogens in water. Despite the fact that host-specificity was not observed in the set of E. coli analysed, CRISPR alleles were shown to be useful in detection of the geographical site of sources. HRMA allows determination of ‘different’ and ‘same’ CRISPR alleles and can be introduced in water monitoring as a cost-effective and rapid method. Overall, we show that the identified human specific SNP profiles [11], [29], [32] and [45] can be useful as marker genotypes globally for identification of human faecal contamination in water. Developed in the current study, the SNP typing approach can be used in water monitoring laboratories as an inexpensive, high-throughput and easy adapted protocol. The unique approach based on E. coli spacers for the search for unknown phage was developed to examine the host-specifity in phage sequences. Preliminary experiments on the recombinant plasmids showed the possibility of using this method for recovering phage sequences. Future studies will determine the host-specificity of DNA phage genotyping as soon as first reliable sequences can be acquired. No doubt, only implication of multiple approaches in MST will allow identification of the character of microbial contamination with higher confidence and readability.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The 3D Water Chemistry Atlas is an intuitive, open source, Web-based system that enables the three-dimensional (3D) sub-surface visualization of ground water monitoring data, overlaid on the local geological model (formation and aquifer strata). This paper firstly describes the results of evaluating existing virtual globe technologies, which led to the decision to use the Cesium open source WebGL Virtual Globe and Map Engine as the underlying platform. Next it describes the backend database and search, filtering, browse and analysis tools that were developed to enable users to interactively explore the groundwater monitoring data and interpret it spatially and temporally relative to the local geological formations and aquifers via the Cesium interface. The result is an integrated 3D visualization system that enables environmental managers and regulators to assess groundwater conditions, identify inconsistencies in the data, manage impacts and risks and make more informed decisions about coal seam gas extraction, waste water extraction, and water reuse.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

There is no evidence to indicate that there is a risk of acquiring a virus infection through the consumption of properly treated drinking water, provided the integrity of the distribution system is maintained and there is no post-treatment contamination. The consumption of inadequately treated, untreated or post-treatment contaminated water is, however, associated with a risk of hepatitis A, hepatitis E and viral gastroenteritis. The use of the standard bacterial indicators for water monitoring provides an adequate safeguard against viral contamination.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Human population growth and increased industrial activity in recent decades have contributed to a range of environmental problems, including the contamination of groundwater and surface water. In order to help in the management of these resources, water quality indices are used as tools to summarize multiple parameters and express them in the form of a single number. The ability to provide both an integrated assessment of changes in environmental variables, as well as performance tracking, has resulted in such indices being increasingly employed in surface water monitoring programs. The aim of this study was to develop an Index for Public Supply Water Quality (IPS) using a fuzzy inference methodology. Linguistic systems generally provide satisfactory tools for qualitative purposes, enabling the inclusion of descriptive variables with reduced loss of individual information. Validation of the technique was achieved by analysis of measurement data obtained for the Sorocaba River, provided by CETESB. The new procedure proved more rigorous, compared to classical IPS. It could be readily applied in the evaluation of other water bodies, or be adjusted to incorporate additional parameters also considered important for the assessment of water quality.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Polybrominated diphenyl ethers (PBDEs) are considered persistent organic pollutants because of their ubiquity, persistence and bioaccumulation. Its harmful effects on human health and the environment, has led to its inclusion of the Stockholm Convention. Little information is found about PBDEs in abiotic systems of the South America in open literature. This paper reports the presence and concentration level of four PBDEs congeners in Mendoza River, Argentina. The selected PBDEs were: 2,2',4,4'-tetrabromodiphenyl ether (BDE-47), 2,2',4,4',5-pentabromodiphenyl ether (BDE-99), 2,2',4,4',6-pentabromodiphenyl ether (BDE- 100) and 2,2',4,4',5,5'-hexabromodiphenyl ether (BDE-153). The analytical methodology used was head space-solid phase micro extraction combined with gas chromatographymass spectrometry (HS-SPME-GC-MS/MS). Several variables, including pH, salting out, extraction technique type and extraction time were studied and optimized over the relative response the target analytes. The precision of HS-SPME-GC-MS/MS evaluated over five replicate, leading RSDs values <13%, detection limits (S/N=3) ranging from 0.03 pg ml-1 to 0.12 pg ml-1 and the calibration graph was linear with r2=0.9959. BDE-47 and BDE-100 were the predominant congeners found in the analyzed samples. Their concentrations ranged from not detected to 1.9 pg ml-1 and to 0.5 pg ml-1, respectively.