950 resultados para water environment
Resumo:
Purpose: To determine visual performance in water, including the influence of pupil size. Method: The water environment was simulated by placing a goggle filled with saline in front of eyes, with apertures placed at the front of the goggle. Correction factors were determined for the different magnification under this condition to estimate vision in water. Experiments were conducted on letter visual acuity (7 participants), grating resolution (8 participants), and grating contrast sensitivity (1 participant). Results: For letter acuity, mean loss in vision in water, compared to corrected vision in air, varied between 1.1 log minutes of arc resolution (logMAR) for a 1mm aperture to 2.2 logMAR for a 7mm aperture. The vision in minutes of arc was described well by a linear relationship with pupil size. For grating acuity, mean loss varied between 1.1 logMAR for a 2mm aperture to 1.2 logMAR for a 6mm aperture. Contrast sensitivity for a 2mm aperture deteriorated as spatial frequency increased, with 2 log unit loss by 3 cycles/degree. Superimposed on this deterioration were depressions (notches) in sensitivity, with the first three notches occurring at 0.45, 0.8 and 1.3 cycles/degree and with estimates for water of 0.39, 0.70 and 1.13 cycles/degree. Conclusion: Vision in water is poor. It becomes worse as pupil size increases, but the effects are much more marked for letter targets than for grating targets.
Resumo:
Concentrations of several pesticides were monitored in a paddy block and in the Kose river, which drains a paddy catchment in Fukuoka prefecture, Japan. Detailed water management in the block was also monitored to evaluate its effect on the pesticide contamination. The concentrations of applied pesticides in both block irrigation channel and drainage canal increased to tens of μg/L shortly after their applications. The increase in pesticide concentrations was well correlated with the open of irrigation and drainage gates in the pesticide-applied paddy plots only 1–3 days after pesticide application. High concentration of other pesticides, mainly herbicides, was also observed in the inflow irrigation and drainage waters, confirming the popularity of early irrigation and drainage after pesticide application in the area. The requirement of holding water after pesticide application (as a best management practice) issued by the authority was thus not properly followed. In a larger scale of the paddy catchment, the concentration of pesticides also increased significantly to several μg/L in the water of the Kose river shortly after the start of the pesticide application period either in downstream or mid–upstream areas, confirming the effect of current water management to the water quality. More extension and enforcement on water management should be done in order to control pesticide pollution from rice cultivation in Japan.
Resumo:
The micro paddy lysimeter (MPL) was developed and evaluated for its performance to simulate solute transport in paddy environment under laboratory conditions. MPLs were constructed using soil collected from Field Museum Honmachi of Tokyo University of Agriculture and Technology, Japan. For the physical characteristics of the hardpan layer, parameters such as thickness, and soil aggregate size, affecting the percolation rate were studied. For the plow layer, two types of plow soils, sieved and un-sieved soils were compared. The sieved soil plow layer was produced by mixing air-dried soils of different aggregate sizes of D > 9.50, 9.50 ≥ D > 4.75, 4.75 ≥ D > 2.0 mm and D ≤ 2.0 mm at 47.1, 19.5, 20.6, and 12.8%, respectively. The un-sieved plow layer soil was directly used after collecting from the field. Inert tracer was applied to ponding water with controlled boundary conditions to evaluate the reproducibility of the soil hydraulic characteristics. HYDRUS-1D was used to evaluate the movement of bromide tracer in the MPL. The proposed conditions of the MPL were that the hardpan layer can be made from soil aggregates smaller than 0.425 mm with 2 cm thickness and that the plow layer can be prepared with sieved or un-sieved soils. With these conditions, the obtained results proved that MPLs can be a useful tool to simulate solute transport in paddy environment.
Resumo:
The current approach for protecting the receiving water environment from urban stormwater pollution is the adoption of structural measures commonly referred to as Water Sensitive Urban Design (WSUD). The treatment efficiency of WSUD measures closely depends on the design of the specific treatment units. As stormwater quality is influenced by rainfall characteristics, the selection of appropriate rainfall events for treatment design is essential to ensure the effectiveness of WSUD systems. Based on extensive field investigations in four urban residential catchments based at Gold Coast, Australia, and computer modelling, this paper details a technically robust approach for the selection of rainfall events for stormwater treatment design using a three-component model. The modelling results confirmed that high intensity-short duration events produce 58.0% of TS load while they only generated 29.1% of total runoff volume. Additionally, rainfall events smaller than 6-month average recurrence interval (ARI) generates a greater cumulative runoff volume (68.4% of the total annual runoff volume) and TS load (68.6% of the TS load exported) than the rainfall events larger than 6-month ARI. The results suggest that for the study catchments, stormwater treatment design could be based on the rainfall which had a mean value of 31 mm/h average intensity and 0.4 h duration. These outcomes also confirmed that selecting smaller ARI rainfall events with high intensity-short duration as the threshold for treatment system design is the most feasible approach since these events cumulatively generate a major portion of the annual pollutant load compared to the other types of events, despite producing a relatively smaller runoff volume. This implies that designs based on small and more frequent rainfall events rather than larger rainfall events would be appropriate in the context of efficiency in treatment performance, cost-effectiveness and possible savings in land area needed.
Resumo:
The quality of tap water from water supplies from 14 districts of Kerala state, India was studied. Parameters like pH, water temperature, total dissolved solids, salinity, nitrates, chloride, hardness, magnesium, calcium, sodium, potassium, fluoride, sulphate, phosphates, and coliform bacteria were enumerated. The results showed that all water samples were contaminated by coliform bacteria. About 20% of the tap water samples from Alappuzha and 15% samples from Palakkad district are above desirable limits prescribed by Bureau of Indian Standards. The contamination of the source water (due to lack of community hygiene) and insufficient treatment are the major cause for the coliform contamination in the state. Water samples from Alappuzha and Palakkad have high ionic and fluoride content which could be attributed to the geology of the region. Water supplied for drinking in rural areas are relatively free of any contamination than the water supplied in urban area by municipalities, which may be attributed higher chances of contamination in urban area due to mismanagement of solid and liquid wastes. The study highlights the need for regular bacteriological enumeration along with water quality in addition to setting up decentralised region specific improved treatment system.
Resumo:
Microalgae play an important role in conditioning water quality for penaeid larval culture. Recently it has been demonstrated that a modification of the green water larval culture system (Ling, 1969) for Macrobrachium allows the production of post larvae without any water change, despite extensive use of artificial feeds (Ang and Cheah, 1986). Increase of toxic metabolites such as ammonia and nitride are also common in penaeid larval culture, especially where excessive amounts of artifial feeds are employed. Present work examines the use of six marine microalgae at four cell concentrations as a "biological filter" system, to control and detoxify levels of ammonia and nitrite in P. monodon larval culture water whilst using artificial diet. Preliminary results indicate that amongst the six algal species tested, C. japonica at 1000 cell μlˉ¹ was most effective in reducing accumulated toxic metabolites from an unchanged culture water environment.
Resumo:
Source of the Nile Fish farm (SON) is located at Bugungu area in Napoleon Gulf, northern Lake Victoria. The proprietors of the farm and the National Fisheries Resources Research Institute (NaFIRRI) have an established collaborative arrangement where NaFIRRI provides technical back‐stopping to enable quarterly environment monitoring of the cage site as a mandatory requirement of the National Environment Management Authority (NEMA). The agreed study areas are selected physical‐chemical factors (water depth, water transparency/secchi depth, water temperature, dissolved oxygen, pH, conductivity, and nutrient status), algal community (including primary production), aquatic invertebrates (zooplankton and macro‐benthos) and the fish community. This report presents field observations made during the fourth quarter (October‐December) field survey undertaken during December 2013; along with scientific interpretation and discussion of the results in reference to possible impacts of the cage facility to the water environment quality and aquatic biota.
Resumo:
Source of the Nile Fish farm (SON) is located at Bugungu area in Napoleon Gulf, northern Lake Victoria. The proprietors of the farm requested NaFIRRI to provide technical assistance to undertake regular environment monitoring of the cage site as a mandatory requirement under the NEMA conditions. NAFIRRI agreed to undertake regular environment surveys in the cage area covering selected physical‐chemical factors (water column depth, water transparency, water column temperature, dissolved oxygen, pH, conductivity, nutrient status), algal aquatic invertebrates (micro‐invertebrates/zooplankton and macro‐benthos) and fish communities. During the year 2013, it was agreed with management to undertake quarterly environment monitoring surveys. However, the first quarter (January‐March 2013) survey was missed out due to late decision. The present report therefore covers the survey taken during the second quarter (April‐June 2013). Results/observations made are presented in this technical report along with a scientific interpretation and discussion of the results with reference to possible impacts of the cage facilities to the water environment and aquatic biota.
Resumo:
The first year-round quarterly surveys were completed for the year 2011. For the year 2012, SON management decided to change the frequency of the surveys from quarterly to biannual and the first such survey, was undertaken in June 2012. The second survey was undertaken in December 2012 and is the subject of this report: Results/observations made are presented in this technical report along with a scientific interpretation and discussion of the results with reference to possible impacts of the cage facilities to the water environment and aquatic biota. SON cage study sites were coded as downstream of cages (DSC), within cages (WIC) and upstream of cages (USC). Physical-chemical parameters (water column temperature, dissolved oxygen, pH, conductivity, were measured in-situ with a pre-calibrated hydrolab at each site. A digital Echo Sounder was used to determine the total water column depth at each site. A black and white Secchi disc was used to determine water column transparency. Coordinate locations were determined with a GPS device.
Resumo:
Source of the Nile Fish farm (SON) is located at Bugungu area in Napoleon Gulf, northern Lake Victoria. The proprietors of the farm and the National Fisheries Resources Research Institute (NaFIRRI) have an established collaborative arrangement where NaFIRRI provides technical back-stopping to enable quarterly environment monitoring of the cage site; a mandatory requirement of the National Environment Management Authority (NEMA). The agreed study areas are physical-chemical factors (water depth, water transparency/secchi depth, water temperature, dissolved oxygen, BOO, pH, conductivity), and selected nutrients), algal community (including primary production), aquatic invertebrates (zooplankton and macrobenthos) and the fish community. This report presents field observations made during the third quarter (July-September) field survey undertaken during August 2014; along with scientific interpretation and discussion of the results in reference to possible impacts of the cage facility to the water environment quality and aquatic biota.
Resumo:
Source of the Nile Fish farm (SON) is located in northern Lake Victoria close to the headwaters of the River Nile. The proprietors of the farm have established a collaborative agreement with the National Fisheries Resources Research Institute (NaFIRRI) to undertake quarterly environment monitoring surveys of the fish cage site at Bugungu in the Napoleon Gulf. This activity is a mandatory requirement of the National Environment Management Authority (NEMA) of Uganda. Therefore NAFIRRI undertakes monitoring surveys once every quarter covering selected physical‐chemical parameters including water column depth, water transparency, water column temperature, dissolved oxygen, pH, conductivity and nutrient status; algal, zooplankton, macro‐benthos and fish communities. While the first quarter survey of 2013 (January‐March) was missed out due to late decision, the second quarter monitoring survey was dully undertaken in May 2013 and a technical report was compiled and submitted to the client. The present report covers the third quarter survey (July‐September) undertaken in September 2013. Results/observations made are presented in this technical report along with a scientific interpretation and discussion of the results with reference to possible impacts of the cage facilities to the water environment quality and selected aquatic biota.
Resumo:
Source of the Nile Fish farm (SON) is located at Bugungu area in Napoleon Gulf, northern Lake Victoria. The proprietors of the farm requested NaFIRRI to provide technical assistance to undertake regular environment monitoring of the cage site as is mandatory under the NEMA conditions. NAFIRRI agreed to undertake regular environment surveys in the cage area covering selected physical‐chemical factors i.e. water column depth, water transparency, water column temperature, dissolved oxygen, pH, conductivity, redox potential and turbidity; nutrient status, algal and invertebrate communities (micro‐invertebrates/zooplankton and macro‐invertebrates/macro‐benthos) as well as fish community. The first year‐round quarterly surveys were completed for the year 2011. It was decided by SON management to change the frequency of the monitoring surveys to biannual starting in the year 2012 and the first such survey, which is the subject of this report, was undertaken in June 2012. Results/observations made are presented in this technical report along with a scientific interpretation and discussion of the results with reference to possible impacts of the cage facilities to the water environment and aquatic biota. SON
Resumo:
Source of the Nile Fish farm (SON) is located at Bugungu area in Napoleon Gulf, northern Lake Victoria. The proprietors of the farm and the National Fisheries Resources Research Institute (NaFIRRI) have an established collaborative arrangement where NaFIRRI provides technical back‐stopping to enable quarterly environment monitoring of the cage site as a mandatory requirement of the National Environment Management Authority (NEMA). The agreed study areas are selected physical‐chemical factors (water depth, water transparency/secchi depth, water temperature, dissolved oxygen, pH, conductivity, and nutrient status), algal community (including primary production), aquatic invertebrates (zooplankton and macro‐benthos) and the fish community. This report presents field observations made during the first quarter (January‐March) field survey undertaken during March 2014; along with scientific interpretation and discussion of the results in reference to possible impacts of the cage facility to the water environment quality and aquatic biota. The