994 resultados para volumetric-modulated arc therapy


Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE Different international target volume delineation guidelines exist and different treatment techniques are available for salvage radiation therapy (RT) for recurrent prostate cancer, but less is known regarding their respective applicability in clinical practice. METHODS AND MATERIALS A randomized phase III trial testing 64 Gy vs 70 Gy salvage RT was accompanied by an intense quality assurance program including a site-specific and study-specific questionnaire and a dummy run (DR). Target volume delineation was performed according to the European Organisation for the Research and Treatment of Cancer guidelines, and a DR-based treatment plan was established for 70 Gy. Major and minor protocol deviations were noted, interobserver agreement of delineated target contours was assessed, and dose-volume histogram (DVH) parameters of different treatment techniques were compared. RESULTS Thirty European centers participated, 43% of which were using 3-dimensional conformal RT (3D-CRT), with the remaining centers using intensity modulated RT (IMRT) or volumetric modulated arc technique (VMAT). The first submitted version of the DR contained major deviations in 21 of 30 (70%) centers, mostly caused by inappropriately defined or lack of prostate bed (PB). All but 5 centers completed the DR successfully with their second submitted version. The interobserver agreement of the PB was moderate and was improved by the DR review, as indicated by an increased κ value (0.59 vs 0.55), mean sensitivity (0.64 vs 0.58), volume of total agreement (3.9 vs 3.3 cm(3)), and decrease in the union volume (79.3 vs 84.2 cm(3)). Rectal and bladder wall DVH parameters of IMRT and VMAT vs 3D-CRT plans were not significantly different. CONCLUSIONS The interobserver agreement of PB delineation was moderate but was improved by the DR. Major deviations could be identified for the majority of centers. The DR has improved the acquaintance of the participating centers with the trial protocol.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: To assess the early clinical outcomes and toxicities in patients treated with high precision radiation therapy (RT) consisting of helical tomotherapy (HT) or intensity-modulated radiation therapy (IMRT) for anal cancer. Materials and Methods: Since March 2006, 30 patients with stage I-IIIB anal squamous-cell carcinoma were treated curatively by IMRT or HT alone (n = 2) or by concomitant chemotherapy and IMRT or HT (n = 28). Median age was 59 years (range, 36−83 years) and the female/male ratio was 2.3 (21/9). Primary tumor site was anal canal, anal margin, or both in 26, 1, and 3 patients, respectively. Anal tumor, pelvic and inguinal nodes were irradiated with a median dose of 36 Gy using HT, or 5- or 7-field IMRT in 18 and 12 patients, respectively; After a planned gap of 1−2 weeks (median 1 week), a median boost dose of 23.4 Gwas delivered to the tumor and/or involved nodes using 3DRT (n = 24) or HT/IMRT (n = 6). The total delivered dose ranged between 59.4 and 64.8 Gy (median, 59.4 Gy). Concomitant chemotherapy consisted of mitomycin C alone (n = 1), mitomycin C and 5-fluorouracil (n = 17) or capecitabin (n = 10) in 28 patients. Common Terminology Criteria for Adverse Events v3.0 scale was used to score acute and late toxicities. Results: All but one patient, who developed progressive local and distant disease at the end of RT, achieved a complete response. Twelve months following RT, one patient had a recurrence at the primary tumor site, salvaged with brachytherapy. After a median follow-up of 7.5 months (range, 1−35 months), no deaths were observed. The 2-year actuarial locoregional control and probability of disease control without colostomy rates were 82% and 79%, respectively. RT was well tolerated without any unplanned treatment interruptions. Grade 1 or 2 acute adverse events consisted of skin toxicity in 8 and 22 patients, diarrhea in 18 and 3 patients, and cystitis in 9 and 2 patients; respectively. Only one patient developed grade 3 mucosal necrosis at the end of the treatment, requiring diverting colostomy. No difference in terms of acute toxicity was observed between patients treated with HT or IMRT. None of the 22 patients with a follow-up of more than 3 months developed grade 3 or more late toxicity. Conclusions: Our preliminary results suggest that HT or IMRT combined with concomitant chemotherapy for anal cancer is effective, and associated with favorable rates of toxicity compared with historical series. Further follow-up is warranted to assess late toxicity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To make a comprehensive evaluation of organ-specific out-of-field doses using Monte Carlo (MC) simulations for different breast cancer irradiation techniques and to compare results with a commercial treatment planning system (TPS). Three breast radiotherapy techniques using 6MV tangential photon beams were compared: (a) 2DRT (open rectangular fields), (b) 3DCRT (conformal wedged fields), and (c) hybrid IMRT (open conformal+modulated fields). Over 35 organs were contoured in a whole-body CT scan and organ-specific dose distributions were determined with MC and the TPS. Large differences in out-of-field doses were observed between MC and TPS calculations, even for organs close to the target volume such as the heart, the lungs and the contralateral breast (up to 70% difference). MC simulations showed that a large fraction of the out-of-field dose comes from the out-of-field head scatter fluence (>40%) which is not adequately modeled by the TPS. Based on MC simulations, the 3DCRT technique using external wedges yielded significantly higher doses (up to a factor 4-5 in the pelvis) than the 2DRT and the hybrid IMRT techniques which yielded similar out-of-field doses. In sharp contrast to popular belief, the IMRT technique investigated here does not increase the out-of-field dose compared to conventional techniques and may offer the most optimal plan. The 3DCRT technique with external wedges yields the largest out-of-field doses. For accurate out-of-field dose assessment, a commercial TPS should not be used, even for organs near the target volume (contralateral breast, lungs, heart).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study was to evaluate the treatment dosimetry, efficacy and toxicity of intensity modulated radiation therapy (IMRT) and fractionated stereotactic radiotherapy (FSRT) in the management of infratentorial ependymoma. Between 1999 and 2007, seven children (median age, 3.1 years) with infratentorial ependymoma were planned with either IMRT (3 patients) or SFRT (4 patients), the latter after conventional posterior fossa irradiation. Two children underwent gross total resection. Median prescribed dose was 59.4 Gy (range, 55.8-60). The median follow-up for surviving patients was 4.8 years (range, 1.3-8). IMRT (median dose, 59.4 Gy) and FSRT (median dose, 55.8 Gy) achieved similar optimal target coverage. Percentages of maximum doses delivered to the cochleae (59.5 vs 85.0% Gy; P = 0.05) were significantly inferior with IMRT, when compared to FSRT planning. Percentages of maximum doses administered to the pituitary gland (38.2 vs 20.1%; P = 0.05) and optic chiasm (38.1 vs 14.1%; P = 0.001) were, however, significantly higher with IMRT, when compared to FSRT planning. No recurrences were observed at the last follow-up. The estimated 3-year progression-free survival and overall survival were 87.5 and 100%, respectively. No grade >1 acute toxicity was observed. Two patients presented late adverse events (grade 2 hypoacousia) during follow-up, without cognitive impairment. IMRT or FSRT for infratentorial ependymomas is effective and associated with a tolerable toxicity level. Both treatment techniques were able to capitalize their intrinsic conformal ability to deliver high-dose radiation. Larger series of patients treated with these two modalities will be necessary to more fully evaluate these delivery techniques.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The comparison of radiotherapy techniques regarding secondary cancer risk has yielded contradictory results possibly stemming from the many different approaches used to estimate risk. The purpose of this study was to make a comprehensive evaluation of different available risk models applied to detailed whole-body dose distributions computed by Monte Carlo for various breast radiotherapy techniques including conventional open tangents, 3D conformal wedged tangents and hybrid intensity modulated radiation therapy (IMRT). First, organ-specific linear risk models developed by the International Commission on Radiological Protection (ICRP) and the Biological Effects of Ionizing Radiation (BEIR) VII committee were applied to mean doses for remote organs only and all solid organs. Then, different general non-linear risk models were applied to the whole body dose distribution. Finally, organ-specific non-linear risk models for the lung and breast were used to assess the secondary cancer risk for these two specific organs. A total of 32 different calculated absolute risks resulted in a broad range of values (between 0.1% and 48.5%) underlying the large uncertainties in absolute risk calculation. The ratio of risk between two techniques has often been proposed as a more robust assessment of risk than the absolute risk. We found that the ratio of risk between two techniques could also vary substantially considering the different approaches to risk estimation. Sometimes the ratio of risk between two techniques would range between values smaller and larger than one, which then translates into inconsistent results on the potential higher risk of one technique compared to another. We found however that the hybrid IMRT technique resulted in a systematic reduction of risk compared to the other techniques investigated even though the magnitude of this reduction varied substantially with the different approaches investigated. Based on the epidemiological data available, a reasonable approach to risk estimation would be to use organ-specific non-linear risk models applied to the dose distributions of organs within or near the treatment fields (lungs and contralateral breast in the case of breast radiotherapy) as the majority of radiation-induced secondary cancers are found in the beam-bordering regions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

INTRODUCTION: To report acute and late toxicities in patients with intermediate- and high-risk prostate cancer treated with combined high-dose-rate brachytherapy (HDR-B) and intensity-modulated radiation therapy (IMRT). MATERIALS AND METHODS: From March 2003 to September 2005, 64 men were treated with a single implant HDR-B with 21 Gy given in three fractions, followed by 50 Gy IMRT along with organ tracking. Median age was 66.1 years, and risk of recurrence was intermediate in 47% of the patients or high in 53% of the patients. Androgen deprivation therapy was received by 69% of the patients. Toxicity was scored according to the CTCAE version 3.0. Median follow-up was 3.1 years. RESULTS: Acute grade 3 genitourinary (GU) toxicity was observed in 7.8% of the patients, and late grades 3 and 4 GU toxicity was observed in 10.9% and 1.6% of the patients. Acute grade 3 gastrointestinal (GI) toxicity was experienced by 1.6% of the patients, and late grade 3 GI toxicity was absent. The urethral V(120) (urethral volume receiving > or =120% of the prescribed HDR-B dose) was associated with acute (P=.047) and late > or = grade 2 GU toxicities (P=.049). CONCLUSIONS: Late grades 3 and 4GU toxicity occurred in 10.9% and 1.6% of the patients after HDR-B followed by IMRT in association with the irradiated urethral volume. The impact of V(120) on GU toxicity should be validated in further studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

to report acute and late toxicity in prostate cancer patients treated by high-dose intensity-modulated radiation therapy (IMRT) with daily image-guidance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To describe biochemical relapse-free survival (BRFS) and late toxicity after combined high-dose rate brachytherapy (HDR-B) and intensity-modulated radiation therapy (IMRT) in intermediate- and high-risk prostate cancer patients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study was to evaluate the treatment dosimetry, efficacy and toxicity of intensity modulated radiation therapy (IMRT) and fractionated stereotactic radiotherapy (FSRT) in the management of infratentorial ependymoma. Between 1999 and 2007, seven children (median age, 3.1 years) with infratentorial ependymoma were planned with either IMRT (3 patients) or SFRT (4 patients), the latter after conventional posterior fossa irradiation. Two children underwent gross total resection. Median prescribed dose was 59.4 Gy (range, 55.8-60). The median follow-up for surviving patients was 4.8 years (range, 1.3-8). IMRT (median dose, 59.4 Gy) and FSRT (median dose, 55.8 Gy) achieved similar optimal target coverage. Percentages of maximum doses delivered to the cochleae (59.5 vs 85.0% Gy; P = 0.05) were significantly inferior with IMRT, when compared to FSRT planning. Percentages of maximum doses administered to the pituitary gland (38.2 vs 20.1%; P = 0.05) and optic chiasm (38.1 vs 14.1%; P = 0.001) were, however, significantly higher with IMRT, when compared to FSRT planning. No recurrences were observed at the last follow-up. The estimated 3-year progression-free survival and overall survival were 87.5 and 100%, respectively. No grade >1 acute toxicity was observed. Two patients presented late adverse events (grade 2 hypoacousia) during follow-up, without cognitive impairment. IMRT or FSRT for infratentorial ependymomas is effective and associated with a tolerable toxicity level. Both treatment techniques were able to capitalize their intrinsic conformal ability to deliver high-dose radiation. Larger series of patients treated with these two modalities will be necessary to more fully evaluate these delivery techniques.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: To report acute and late toxicity in prostate cancer patients treated by dose escalated intensity-modulated radiation therapy (IMRT) and organ tracking. METHODS: From 06/2004 to 12/2005 39 men were treated by 80 Gy IMRT along with organ tracking. Median age was 69 years, risk of recurrence was low 18%, intermediate 21% and high in 61% patients. Hormone therapy (HT) was received by 74% of patients. Toxicity was scored according to the CTC scale version 3.0. Median follow-up (FU) was 29 months. RESULTS: Acute and maximal late grade 2 gastrointestinal (GI) toxicity was 3% and 8%, late grade 2 GI toxicity dropped to 0% at the end of FU. No acute or late grade 3 GI toxicity was observed. Grade 2 and 3 pre-treatment genitourinary (GU) morbidity (PGUM) was 20% and 5%. Acute and maximal late grade 2 GU toxicity was 56% and 28% and late grade 2 GU toxicity decreased to 15% of patients at the end of FU. Acute and maximal late grade 3 GU toxicity was 8% and 3%, respectively. Decreased late > or = grade 2 GU toxicity free survival was associated with higher age (P = .025), absence of HT (P = .016) and higher PGUM (P < .001). DISCUSSION: GI toxicity rates after IMRT and organ tracking are excellent, GU toxicity rates are strongly related to PGUM.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

INTRODUCTION: To report acute and late toxicities in patients with intermediate- and high-risk prostate cancer treated with combined high-dose-rate brachytherapy (HDR-B) and intensity-modulated radiation therapy (IMRT). MATERIALS AND METHODS: From March 2003 to September 2005, 64 men were treated with a single implant HDR-B with 21 Gy given in three fractions, followed by 50 Gy IMRT along with organ tracking. Median age was 66.1 years, and risk of recurrence was intermediate in 47% of the patients or high in 53% of the patients. Androgen deprivation therapy was received by 69% of the patients. Toxicity was scored according to the CTCAE version 3.0. Median follow-up was 3.1 years. RESULTS: Acute grade 3 genitourinary (GU) toxicity was observed in 7.8% of the patients, and late grades 3 and 4 GU toxicity was observed in 10.9% and 1.6% of the patients. Acute grade 3 gastrointestinal (GI) toxicity was experienced by 1.6% of the patients, and late grade 3 GI toxicity was absent. The urethral V(120) (urethral volume receiving > or =120% of the prescribed HDR-B dose) was associated with acute (P=.047) and late > or = grade 2 GU toxicities (P=.049). CONCLUSIONS: Late grades 3 and 4GU toxicity occurred in 10.9% and 1.6% of the patients after HDR-B followed by IMRT in association with the irradiated urethral volume. The impact of V(120) on GU toxicity should be validated in further studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: To determine whether a 3-mm isotropic target margin adequately covers the prostate and seminal vesicles (SVs) during administration of an intensity-modulated radiation therapy (IMRT) treatment fraction, assuming that daily image-guided setup is performed just before each fraction. MATERIALS AND METHODS: In-room computed tomographic (CT) scans were acquired immediately before and after a daily treatment fraction in 46 patients with prostate cancer. An eight-field IMRT plan was designed using the pre-fraction CT with a 3-mm margin and subsequently recalculated on the post-fraction CT. For convenience of comparison, dose plans were scaled to full course of treatment (75.6 Gy). Dose coverage was assessed on the post-treatment CT image set. RESULTS: During one treatment fraction (21.4+/-5.5 min), there were reductions in the volumes of the prostate and SVs receiving the prescribed dose (median reduction 0.1% and 1.0%, respectively, p<0.001) and in the minimum dose to 0.1 cm(3) of their volumes (median reduction 0.5 and 1.5 Gy, p<0.001). Of the 46 patients, three patients' prostates and eight patients' SVs did not maintain dose coverage above 70 Gy. Rectal filling correlated with decreased percentage-volume of SV receiving 75.6, 70, and 60 Gy (p<0.02). CONCLUSIONS: The 3-mm intrafractional margin was adequate for prostate dose coverage. However, a significant subset of patients lost SV dose coverage. The rectal volume change significantly affected SV dose coverage. For advanced-stage prostate cancers, we recommend to use larger margins or improve organ immobilization (such as with a rectal balloon) to ensure SV coverage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: To evaluate the clinical impact of the Varian Exact Couch on dose and volume coverage to targets and critical structures and tumor control probability (TCP) for 6-MV IMRT and Arc Therapy. Methods: Five clinical prostate patients were planned with both, 6-MV 8-field IMRT and 6-MV 2-field RapidArc using the Eclipse treatment planning system (TPS). These plans neglected treatment couch attenuation, as is standard clinical practice. Dose distributions were then recalculated in Eclipse with the inclusion of the Varian Exact Couch (imaging couch top) and the rails in varying configurations. The changes in dose and coverage were evaluated using the DVHs from each plan iteration. We used a tumor control probability (TCP) model to calculate losses in tumor control resulting from not accounting for the couch top and rails. We also verified dose measurements in a phantom. Results: Failure to account for the treatment couch and rails resulted in clinically unacceptable dose and volume coverage losses to the target for both IMRT and RapidArc. The couch caused average dose losses (relative to plans that ignored the couch) to the prostate of 4.2% and 2.0% for IMRT with the rails out and in, respectively, and 3.2% and 2.9% for RapidArc with the rails out and in, respectively. On average, the percentage of the target covered by the prescribed dose dropped to 35% and 84% for IMRT (rails out and in, respectively) and to 18% and 17% for RapidArc (rails out and in, respectively). The TCP was also reduced by as much as 10.5% (6.3% on average). Dose and volume coverage losses for IMRT plans were primarily due to the rails, while the imaging couch top contributed most to losses for RapidArc. Both the couch top and rails contribute to dose and coverage losses that can render plans clinically unacceptable. A follow-up study we performed found that the less attenuating unipanel mesh couch top available with the Varian Exact couch does not cause a clinically impactful loss of dose or coverage for IMRT but still causes an unacceptable loss for RapidArc. Conclusions: Both the imaging couch top and rails contribute to dose and coverage loss to a degree that, if included, would prevent the plan from meeting clinical planning criteria. Therefore, the imaging and mesh couch tops and rails should be accounted for in Arc Therapy and the imaging couch and rails only in IMRT treatment planning.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: To evaluate normal tissue dose reduction in step-and-shoot intensity-modulated radiation therapy (IMRT) on the Varian 2100 platform by tracking the multileaf collimator (MLC) apertures with the accelerator jaws. Methods: Clinical radiation treatment plans for 10 thoracic, 3 pediatric and 3 head and neck patients were converted to plans with the jaws tracking each segment’s MLC apertures. Each segment was then renormalized to account for the change in collimator scatter to obtain target coverage within 1% of that in the original plan. The new plans were compared to the original plans in a commercial radiation treatment planning system (TPS). Reduction in normal tissue dose was evaluated in the new plan by using the parameters V5, V10, and V20 in the cumulative dose-volume histogram for the following structures: total lung minus GTV (gross target volume), heart, esophagus, spinal cord, liver, parotids, and brainstem. In order to validate the accuracy of our beam model, MLC transmission measurements were made and compared to those predicted by the TPS. Results: The greatest change between the original plan and new plan occurred at lower dose levels. The reduction in V20 was never more than 6.3% and was typically less than 1% for all patients. The reduction in V5 was 16.7% maximum and was typically less than 3% for all patients. The variation in normal tissue dose reduction was not predictable, and we found no clear parameters that indicated which patients would benefit most from jaw tracking. Our TPS model of MLC transmission agreed with measurements with absolute transmission differences of less than 0.1 % and thus uncertainties in the model did not contribute significantly to the uncertainty in the dose determination. Conclusion: The amount of dose reduction achieved by collimating the jaws around each MLC aperture in step-and-shoot IMRT does not appear to be clinically significant.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Intensity modulated radiation therapy (IMRT) is a technique that delivers a highly conformal dose distribution to a target volume while attempting to maximally spare the surrounding normal tissues. IMRT is a common treatment modality used for treating head and neck (H&N) cancers, and the presence of many critical structures in this region requires accurate treatment delivery. The Radiological Physics Center (RPC) acts as both a remote and on-site quality assurance agency that credentials institutions participating in clinical trials. To date, about 30% of all IMRT participants have failed the RPC’s remote audit using the IMRT H&N phantom. The purpose of this project is to evaluate possible causes of H&N IMRT delivery errors observed by the RPC, specifically IMRT treatment plan complexity and the use of improper dosimetry data from machines that were thought to be matched but in reality were not. Eight H&N IMRT plans with a range of complexity defined by total MU (1460-3466), number of segments (54-225), and modulation complexity scores (MCS) (0.181-0.609) were created in Pinnacle v.8m. These plans were delivered to the RPC’s H&N phantom on a single Varian Clinac. One of the IMRT plans (1851 MU, 88 segments, and MCS=0.469) was equivalent to the median H&N plan from 130 previous RPC H&N phantom irradiations. This average IMRT plan was also delivered on four matched Varian Clinac machines and the dose distribution calculated using a different 6MV beam model. Radiochromic film and TLD within the phantom were used to analyze the dose profiles and absolute doses, respectively. The measured and calculated were compared to evaluate the dosimetric accuracy. All deliveries met the RPC acceptance criteria of ±7% absolute dose difference and 4 mm distance-to-agreement (DTA). Additionally, gamma index analysis was performed for all deliveries using a ±7%/4mm and ±5%/3mm criteria. Increasing the treatment plan complexity by varying the MU, number of segments, or varying the MCS resulted in no clear trend toward an increase in dosimetric error determined by the absolute dose difference, DTA, or gamma index. Varying the delivery machines as well as the beam model (use of a Clinac 6EX 6MV beam model vs. Clinac 21EX 6MV model), also did not show any clear trend towards an increased dosimetric error using the same criteria indicated above.