996 resultados para voltammetric determination
Resumo:
A metalloporphyrin incorporated carbon paste sensor has been developed for the determination of metronidazole benzoate (MTZB). Zn(II) complex of 5,10,15,20-tetrakis (3-methoxy-4-hydroxy phenyl) porphyrin (TMHPP) was used as the active material. The MTZB gave a well-defined reduction peak at - 0.713V in 0.1 mol l -1 phosphate buffer solution of pH around 7. Compared with bare carbon paste electrode (CPE), the TMHPP Zn(II) modified electrode significantly enhanced the reduction peak current of MTZB as well as lowered its reduction potential. Under optimum conditions the reduction peak current was proportional to MTZB concentration over the range 1×10-3 mol1-1 to 1×10-5mol1-1. The detection limit was found to be 4.36×10-6mol1-1 . This sensor has been successfully applied for the determination of MTZB in pharmaceutical formulations and urine samples.
Resumo:
Cochin University of Science & Technology
Resumo:
The development and application of a functionalized carbon nanotubes paste electrode (CNPE) modified with crosslinked chitosan for determination of Cu(II) in industrial wastewater, natural water and human urine samples by linear scan anodic stripping voltammetry (LSASV) are described. Different electrodes were constructed using chitosan and chitosan crosslinked with glutaraldehyde (CTS-GA) and epichlorohydrin (CTS-ECH). The best voltammetric response for Cu(II) was obtained with a paste composition of 65% (m/m) of functionalized carbon nanotubes, 15% (m/m) of CTS-ECH, and 20% (m/m) of mineral oil using a solution of 0.05 mol L(-1) KNO(3) with pH adjusted to 2.25 with HNO(3), an accumulation potential of 0.3V vs. Ag/AgCl (3.0 mol L(-1) KCl) for 300 s and a scan rate of 100 mV s(-1). Under these optimal experimental conditions, the voltammetric response was linearly dependent on the Cu(II) concentration in the range from 7.90 x 10(-8) to 1.60 x 10(-5) mol L(-1) with a detection limit of 1.00 x 10(-8) mol L(-1). The samples analyses were evaluated using the proposed sensor and a good recovery of Cu(II) was obtained with results in the range from 98.0% to 104%. The analysis of industrial wastewater, natural water and human urine samples obtained using the proposed CNPE modified with CTS-ECH electrode and those obtained using a comparative method are in agreement at the 95% confidence level. (C) 2009 Elsevier B. V. All rights reserved.
Resumo:
A cathodically pretreated boron-doped diamond electrode was used for the simultaneous anodic determination of ascorbic acid (AA) and caffeine (CAF) by differential pulse voltammetry Linear calibration curves (r = 0 999) were obtained from 1 9 x 10(-5) to 2 I x 10(-4) mol L(-1) for AA and from 9 7 x 10(-6) to 1 1 x 10-4 mol L(-1) for CAF. with detection limits of 19 wool L(-1) and 7 0 mu nol L(-1). respectively This method was successfully applied for the determination of AA and CAF in pharmaceutical formulations. with results equal to those obtained using a HPLC reference method
Resumo:
A simple and highly selective electrochemical method was developed for the single or simultaneous determination of paracetamol (N-acetyl-p-aminophenol, acetaminophen) and caffeine (3,7-dihydro-1,3,7-trimethyl-1H-purine-2,6-dione) in aqueous media (acetate buffer, pH 4.5) on a boron-doped diamond (BDD) electrode using square wave voltammetry (SWV) or differential Pulse voltammetry (DPV). Using DPV with the cathodically pre-treated BDD electrode, a separation of about 550 mV between the peak oxidation potentials Of paracetamol and caffeine present in binary mixtures was obtained. The calibration curves for the simultaneous determination of paracetamol and caffeine showed an excellent linear response, ranging from 5.0 x 10(-7) mol L(-1) to 8.3 x 10(-7) mol L(-1) for both compounds. The detection limits for the simultaneous determination of paracetamol and caffeine were 4.9 x 10(-7) mol L-1 and 3.5 x 10(-8) mol L(-1), respectively. The proposed method Was Successfully applied in the simultaneous determination of paracetamol and caffeine in several pharmaceutical formulations (tablets), with results similar to those obtained using a high-performance liquid chromatography method (at 95% confidence level). (C) 2008 Elsevier BY. All rights reserved.
Resumo:
The L-dopa is the immediate precursor of the neurotransmitter dopamine. Unlike dopamine, L-dopa easily enters the central nervous system and is used in the treatment of Parkinson's disease. A sensitive and selective method is presented for the voltammetric determination of L-dopa in pharmaceutical formulations using a carbon paste electrode modified with trinuclear ruthenium ammine complex [(NH3)(5)Ru-III-O-Ru-IV(NH3)(4)-O-Ru-III(NH3)(5)](6+) (Ru-red) incorporated in NaY zeolite. The parameters which influence on the electrode response (paste composition, potential scan rate, pH and interference) were also investigated. The optimum conditions were found to an electrode composition (m/m) of 25% zeolite containing 6.7% Ru, 50% graphite and 25% mineral oil in acetate buffer at pH 4.8. Voltammetric peak currents showed a linear response for L-dopa concentration in the range between 1.2 x 10(-4) and 1.0 x 10(-2) Mol l(-1) (r = 0.9988) with a detection limit of 8.5 x 10(-5) mol l(-1). The variation coefficient for a 1.0 x 10(-3) mol l(-1) L-dopa (n = 10) was 5.5%. The results obtained for L-dopa in pharmaceutical formulations (tablet) was in agreement with compared official method. In conclusion, this study has illustrated that the proposed electrode modified with Ru-red incorporated zeolite is suitable valuable for selective measurements of L-dopa. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
The electroanalytical determination of isoprenaline in pharmaceutical preparations of a homemade carbon paste electrode modified with copper(II) hexacyanoferrate(III) (CuHCF) was studied by cyclic voltammetry. Several parameters were studied for the optimization of the sensor such as electrode composition, electrolytic solution, pH effect, potential scan rate and interferences in potential. The optimum conditions were found in an electrode composition (in mass) of 15% CuHCF, 60% graphite and 25% mineral oil in 0.5 mol l(-1) acetate buffer solution at pH 6.0. The analytical curve for isoprenaline was linear in the concentration range from 1.96 x 10(-4) to 1.07 x 10(-3) mol l(-1) with a detection limit of 8.0 x 10(-5) mol l(-1). The relative standard deviation was 1.2% for 1.96 x 10(-4) mol l(-1) isoprenaline solution (n=5). The procedure was successfully applied to the determination of isoprenaline in pharmaceutical preparations; the CuHCF modified carbon paste electrode gave comparable results to those results obtained using a UV spectrophotometric method. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
This work presents a methodology for iron determination in fuel ethanol using a modified carbon paste electrode with 1.10 fenantroline/nafion. The electrochemical parameters were optimized for the proposed system and the voltammetric technique of square wave was employed for iron determination. An accumulation time of 5 minutes, such as a 100 mV of pulse magnitude (E(sw)) and frequency (f) of 25 Hz were used as optimized experimental conditions. The modified carbon paste electrode presented linear dependence of amperometric signal with iron concentration in a work range from 6.0x10(-6) until 2.0x10(-5) mol L(-1) of iron, exhibiting a linear correlation coefficient of 0.9884, a detection limit of 2.4 x10(-6) mol L(-1) (n = 3) and amperometric sensibility of 4.5x10(5) mu A/mol L(-1). Analytical curve method was used for iron determination at a commercial fuel sample. Flame atomic absorption spectroscopy was employed as comparative technique.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The application of disk shaped gold ultramicroelectrode for nitrite determination with and without addition of supporting electrolyte was studied using the differential pulse voltammetric method. The well-defined peak for nitrite oxidation near 0.8V (vs. Ag/AgCl reference electrode) was used to obtain analytical plots in the concentration range from 0.1 to 0.6 mmol L-1 and from 10.0 to 50.0 mu mol.L-1. The calculated detection limit was 0.65 mu mol.L-1 in purified water, in the absence of supporting electrolyte, with relative standard deviation of 1.36% (n=6) for analyzing 10.0 mu mol L-1 nitrite solutions, and accuracy of 100.9 %, based on recovery studies. The application of this analytical method to mineral and river water samples of natural pH also showed improved sensitivity when compared with the linear sweep voltammetric method previously reported.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
A method was developed for the differential-pulse cathodic stripping voltammetric determination of ceftazidime with a hanging mercury drop electrode using its reduction peak at -0.43 V in Britton-Robinson buffer pH 4.0. The optimum accumulation potential and time were -0.15 V and up to 60 s, respectively. Linear calibration graphs were obtained from 1 x 10(-8) M and 1.5 x 10(-7) M. The limit of determination was calculated to be 5 x 10(-9) M. The coefficient of variation was 4% (n = 7) at 1 x 10(-7) M ceftazidime. The effect of various components of urine on the voltammetric response was studied, and creatinine, uric acid, urea, and glucose were shown to interfere in the method. Ceftazidime bound to human albumin gives a unique stripping peak at -0.48 V. Recoveries of 87% +/- 2% of the ceftazidime (n = 5) were obtained from urine spiked with 1.27 mu g ml(-1) using C-18 solid phase extraction cartridges. (C) 1997 Academic Press.