845 resultados para volcanic events
Resumo:
Abstract. The 74 (75) ka Toba eruption in Sumatra, Indonesia, is considered to be one of the largest volcanic events during the Quaternary. Tephra from the Toba eruption has been found in many terrestrial and marine sedimentary deposits, and acidity peaks related to the eruption have been used to synchronize ice core records from Greenland and Antarctica. Seismic profiles and sedimentological data from Lake Prespa on the Balkan Peninsula, SE Europe, indicate a lake level lowstand at 73.6±7.7 ka based on ESR dating of shells. Tephrostratigraphy, radiocarbon dating and tuning of the total organic carbon content with the NGRIP isotope record, corroborate that the lake level lowstand was a short-term event superimposed on the general cooling trend at the end of MIS 5, most likely at the onset of the Greenland Stadial GS- 20. Acknowledging that tectonic events or karst processes could have triggered this lake level lowstand, the chronological correspondence between the lowstand and the Toba eruption is intriguing. Therefore a Toba-driven short-term shift to aridity in the Balkan region, leading to lake level changes and triggering spatial expansion events in one of the lake’s most abundant benthic species, the carino mussel Dreissena presbensis, cannot be excluded.
Resumo:
Subaquatic volcanic activity has been ongoing in Lake Kivu since the early Holocene and has a dynamic effect on the biological productivity in the surface water, and the preservation of carbonate in the deep anoxic water. Groundwater discharge into the lake’s deepwater propels the upward advection of the water column that ultimately supplies nutrients to the surface water for biological production. The amount of nutrients supplied from the deepwater can be increased suddenly by (1) a cold meteorological event that drives deep seasonal mixing resulting in increased nutrients from below and oxygen from above, or (2) subaquatic volcanic activity that induces a buoyant hydrothermal plume, which entrains nutrients from the deepwater and results in anoxia or suboxic conditions in the surface water. Previous sedimentological studies in Lake Kivu have hypothesized that regional climatic changes are responsible for sudden changes in the preservation of carbonates in the Main Basin. Here we reveal that sublacustrine volcanic events most likely induce the abrupt changes to the geochemistry in the sediment in Lake Kivu. An unprecedented look into the sediment stratigraphy and geochemistry from high-resolution seismic-reflection, and 15N-isotope analyses was conducted in the Main Basin. The results reveal that buoyant hydrothermal plumes caused by subaquatic volcanic activity are a possible trigger for increased biological productivity and organic matter preservation, and that ongoing hydrothermal activity increases the alkalinity in the deepwater, leading to carbonate preservation. The onset of carbonate preservation since the 1970s that is currently observed in the sediment could indicate that hydrothermal discharge has recently increased in the lake.
Resumo:
The Toba eruption that occurred some 74 ka ago in Sumatra, Indonesia, is among the largest volcanic events on Earth over the last 2 million years. Tephra from this eruption has been spread over vast areas in Asia, where it constitutes a major time marker close to the Marine Isotope Stage 4/5 boundary. As yet, no tephra associated with Toba has been identified in Greenland or Antarctic ice cores. Based on new accurate dating of Toba tephra and on accurately dated European stalagmites, the Toba event is known to occur between the onsets of Greenland interstadials (GI) 19 and 20. Furthermore, the existing linking of Greenland and Antarctic ice cores by gas records and by the bipolar seesaw hypothesis suggests that the Antarctic counterpart is situated between Antarctic Isotope Maxima (AIM) 19 and 20. In this work we suggest a direct synchronization of Greenland (NGRIP) and Antarctic (EDML) ice cores at the Toba eruption based on matching of a pattern of bipolar volcanic spikes. Annual layer counting between volcanic spikes in both cores allows for a unique match. We first demonstrate this bipolar matching technique at the already synchronized Laschamp geomagnetic excursion (41 ka BP) before we apply it to the suggested Toba interval. The Toba synchronization pattern covers some 2000 yr in GI-20 and AIM-19/20 and includes nine acidity peaks that are recognized in both ice cores. The suggested bipolar Toba synchronization has decadal precision. It thus allows a determination of the exact phasing of inter-hemispheric climate in a time interval of poorly constrained ice core records, and it allows for a discussion of the climatic impact of the Toba eruption in a global perspective. The bipolar linking gives no support for a long-term global cooling caused by the Toba eruption as Antarctica experiences a major warming shortly after the event. Furthermore, our bipolar match provides a way to place palaeo-environmental records other than ice cores into a precise climatic context.
Resumo:
Sixteen high-resolution ice-core records from West Antarctica and South Pole are used to examine the spatial and temporal distribution of sulfate for the last 200 years. The preservation of seasonal layers throughout the length of each record results in a dating accuracy of better than 1 year based on known global-scale volcanic events. A dual transport source for West Antarctic sea-salt (ss) SO42- and excess (xs) SO42- is observed: lower-tropospheric for areas below 1000m elevation and mid-/upper-tropospheric/stratospheric for areas located above 1000m. Our XsSO(4)(2-) records with volcanic peaks removed do not display any evidence of an anthropogenic impact on West Antarctic SO42- concentrations but do reveal that a major climate transition takes place over West Antarctica at similar to 1940. Global-scale volcanic eruptions appear as significant peaks in the robust-spline residual xsSO(4)(2-) records from sites located above 1000 m elevation but do not appear in the residual records from sites located below 1000 m.
Resumo:
A chronology called EDML1 has been developed for the EPICA ice core from Dronning Maud Land (EDML). EDML1 is closely interlinked with EDC3, the new chronology for the EPICA ice core from Dome-C (EDC) through a stratigraphic match between EDML and EDC that consists of 322 volcanic match points over the last 128 ka. The EDC3 chronology comprises a glaciological model at EDC, which is constrained and later selectively tuned using primary dating information from EDC as well as from EDML, the latter being transferred using the tight stratigraphic link between the two cores. Finally, EDML1 was built by exporting EDC3 to EDML. For ages younger than 41 ka BP the new synchronized time scale EDML1/EDC3 is based on dated volcanic events and on a match to the Greenlandic ice core chronology GICC05 via 10Be and methane. The internal consistency between EDML1 and EDC3 is estimated to be typically ~6 years and always less than 450 years over the last 128 ka (always less than 130 years over the last 60 ka), which reflects an unprecedented synchrony of time scales. EDML1 ends at 150 ka BP (2417 m depth) because the match between EDML and EDC becomes ambiguous further down. This hints at a complex ice flow history for the deepest 350 m of the EDML ice core.
Resumo:
The Greenland Ice Sheet Project 2 (GISP2) core can enhance our understanding of the relationship between parameters measured in the ice in central Greenland and variability in the ocean, atmosphere, and cryosphere of the North Atlantic Ocean and adjacent land masses. Seasonal (summer, winter) to annual responses of dD and deuterium excess isotopic signals in the GISP2 core to the seesaw in winter temperatures between West Greenland and northern Europe from A.D. 1840 to 1970 are investigated. This seesaw represents extreme modes of the North Atlantic Oscillation, which also influences sea surface temperatures (SSTs), atmospheric pressures, geostrophic wind strength, and sea ice extents beyond the winter season. Temperature excursions inferred from the dD record during seesaw/extreme NAO mode years move in the same direction as the West Greenland side of the seesaw. Symmetry with the West Greenland side of the seesaw suggests a possible mechanism for damping in the ice core record of the lowest decadal temperatures experienced in Europe from A.D. 1500 to 1700. Seasonal and annual deuterium excess excursions during seesaw years show negative correlation with dD. This suggests an isotopic response to a SST/ land temperature seesaw. The isotopic record from GISP2 may therefore give information on both ice sheet and sea surface temperature variability. Cross-plots of dD and d show a tendency for data to be grouped according to the prevailing mode of the seesaw, but do not provide unambiguous identification of individual seesaw years. A combination of ice core and tree ring data sets may allow more confident identification of GA and GB (extreme NAO mode) years prior to 1840.
Resumo:
We here present a synchronization of the NGRIP, GRIP, and GISP2 ice cores based mainly on volcanic events over the period 14.9-32.45 ka b2k (before AD 2000), corresponding to Marine Isotope Stage 2 (MIS 2) and the end of MIS 3. The matching provides a basis for applying the recent NGRIP-based Greenland Ice Core Chronology 2005 (GICC05) time scale to the GRIP and GISP2 ice cores, thereby making it possible to compare the synchronized palaeoclimate profiles of the cores in detail and to identify relative accumulation differences between the cores. Based on the matching, a period of anomalous high accumulation rates in the GISP2 ice core is detected within the period 16.5-18.3 ka b2k. The d18O and [Ca2+] profiles of the three cores are presented on the common GICC05 time scale and generally show excellent agreement across the stadial-interstadial transitions and across the two characteristic dust events in Greenland Stadial 3. However, large differences between the d18O and [Ca2+] profiles of the three cores are seen in the same period as the 7-9% increase in the GISP2 accumulation rate. We conclude that changes of the atmospheric circulation are likely to have occurred in this period, altering the spatial gradients in Greenland and resulting in larger variations between the records.
Resumo:
We here present a synchronization of the NGRIP, GRIP, and GISP2 ice cores based mainly on volcanic events over the period 14.9-32.45 ka b2k (before AD 2000), corresponding to Marine Isotope Stage 2 (MIS 2) and the end of MIS 3. The matching provides a basis for applying the recent NGRIP-based Greenland Ice Core Chronology 2005 (GICC05) time scale to the GRIP and GISP2 ice cores, thereby making it possible to compare the synchronized palaeoclimate profiles of the cores in detail and to identify relative accumulation differences between the cores. Based on the matching, a period of anomalous high accumulation rates in the GISP2 ice core is detected within the period 16.5-18.3 ka b2k. The d18O and [Ca2+] profiles of the three cores are presented on the common GICC05 time scale and generally show excellent agreement across the stadial-interstadial transitions and across the two characteristic dust events in Greenland Stadial 3. However, large differences between the d18O and [Ca2+] profiles of the three cores are seen in the same period as the 7-9% increase in the GISP2 accumulation rate. We conclude that changes of the atmospheric circulation are likely to have occurred in this period, altering the spatial gradients in Greenland and resulting in larger variations between the records.
Resumo:
Isotopic compositions of marine sediments and fossils have been investigated from northern basins of the Mediterranean to help constrain local oceanographic and climatic changes adjacent to the uplifting Alps. Stable C and O isotope compositions of benthic and planktonic foraminifera from the Umbria-Marche region (UMC) have an offset characteristic for their habitats and the changes in composition mimic global changes, suggesting that the regional conditions of climate and the carbon cycle were controlled by global changes. The radiogenic isotope composition of these fossil assemblages allows recognition of three distinct periods. In the first period, from 25 to 19 Ma, high epsilon-Nd values and low 87Sr/86Sr of sediments and fossils support intense tectonism and volcanism, related to the opening of the western Mediterranean. In the second period, from 19 to 13 Ma the 87Sr/86Sr ratio of Mediterranean (UMC) deviate from the global ocean, which is compatible with rapid uplift of the hinterland and intense influx of Sr from Mesozoic carbonates of the western Apennines. This local control on the seawater was driven by a humid and warm climate and indicates restricted exchange of water with the global ocean. Generally, the epsilon-Nd values of the fossils are very similar to those of Indian Ocean water, with brief periods of a decrease in the epsilon-Nd values coinciding with volcanic events and maybe sea level variation at 15.2 Ma. In the third period, from 13 to 10 Ma the fossils have 87Sr/86Sr similar to those of Miocene seawater while their epsilon-Nd values change considerably with time. This indicates fluctuating influence of the Atlantic versus the Paratethys and/or locally evolved seawater in the Mediterranean driven by global sea level changes. Other investigated localities near the Alps and from the ODP 900 site are compatible with this oceanographic interpretation. However, in the late early Miocene, enhanced local control, reflecting erosion of old crustal silicate rocks near the Alps, results in higher 87Sr/86Sr.
Resumo:
Sediment cores were recovered from the New Ireland Basin, east of Papua New Guinea, in order to investigate the late Quaternary eruptive history of the Tabar-Lihir-Tanga-Feni (TLTF) volcanic chain. Foraminifera d18O profiles were matched to the low-latitude oxygen isotope record to date the cores, which extend back to the early part of d18O Stage 9 (333 ka). Sedimentation rates decrease from >10 cm/1000 yr in cores near New Ireland to ~2 cm/1000 yr further offshore. The cores contain 36 discrete ash beds, mostly 1-8 cm thick and interpreted as either fallout or distal turbidite deposits. Most beds have compositionally homogeneous glass shard populations, indicating that they represent single volcanic events. Shards from all ash beds have the subduction-related pattern of strong enrichment in the large-ion lithophile elements relative to MORB, but three distinct compositional groups are apparent: Group A beds are shoshonitic and characterised by >1300 ppm Sr, high Ce/Yb and high Nb/Yb relative to MORB, Group B beds form a high-K series with MORB-like Nb/Yb but high Ce/Yb and well-developed negative Eu anomalies, whereas Group C beds are transitional between the low-K and medium-K series and characterised by flat chondrite-normalised REE patterns with low Nb/Yb relative to MORB. A comparison with published data from the TLTF chain, the New Britain volcanic arc and backarc including Rabaul, and Bagana on Bougainville demonstrates that only Group A beds share the distinctive phenocryst assemblage and shoshonitic geochemistry of the TLTF lavas. The crystal- and lithic-rich character of the Group A beds point to a nearby source, and their high Sr, Ce/Yb and Nb/Yb match those of Tanga and Feni lavas. A youthful stratocone on the eastern side of Babase Island in the Feni group is the most probable source. Group A beds younger than 20 ka are more fractionated than the older Group A beds, and record the progressive development of a shallow level magma chamber beneath the cone. In contrast, Group B beds represent glass-rich fallout from voluminous eruptions at Rabaul, whereas Group C beds represent distal glass-rich fallout from elsewhere along the volcanic front of the New Britain arc.
Resumo:
La actividad volcánica interviene en multitud de facetas de la propia actividad humana, no siempre negativas. Sin embargo, son más los motivos de peligrosidad y riesgo que incitan al estudio de la actividad volcánica. Existen razones de seguridad que inciden en el mantenimiento del seguimiento y monitorización de la actividad volcánica para garantizar la vida y la seguridad de los asentamientos antrópicos en las proximidades de los edificios volcánicos. En esta tesis se define e implementa un sistema de monitorización de movimientos de la corteza en las islas de Tenerife y La Palma, donde el impacto social que representa un aumento o variación de la actividad volcánica en las islas es muy severo. Aparte de la alta densidad demográfica del Archipiélago, esta población aumenta significativamente, en diferentes periodos a lo largo del año, debido a la actividad turística que representa la mayor fuente de ingresos de las islas. La población y los centros turísticos se diseminan predominantemente a lo largo de las costas y también a lo largo de los flancos de los edificios volcánicos. Quizá el mantenimiento de estas estructuras sociales y socio-económicas son los motivos más importantes que justifican una monitorización de la actividad volcánica en las Islas Canarias. Recientemente se ha venido trabajando cada vez más en el intento de predecir la actividad volcánica utilizando los nuevos sistemas de monitorización geodésica, puesto que la actividad volcánica se manifiesta anteriormente por deformación de la corteza terrestre y cambios en la fuerza de la gravedad en la zona donde más tarde se registran eventos volcánicos. Los nuevos dispositivos y sensores que se han desarrollado en los últimos años en materias como la geodesia, la observación de la Tierra desde el espacio y el posicionamiento por satélite, han permitido observar y medir tanto la deformación producida en el terreno como los cambios de la fuerza de la gravedad antes, durante y posteriormente a los eventos volcánicos que se producen. Estos nuevos dispositivos y sensores han cambiado las técnicas o metodologías geodésicas que se venían utilizando hasta la aparición de los mismos, renovando métodos clásicos y desarrollando otros nuevos que ya se están afianzando como metodologías probadas y reconocidas para ser usadas en la monitorización volcánica. Desde finales de la década de los noventa del siglo pasado se han venido desarrollando en las Islas Canarias varios proyectos que han tenido como objetivos principales el desarrollo de nuevas técnicas de observación y monitorización por un lado y el diseño de una metodología de monitorización volcánica adecuada, por otro. Se presenta aquí el estudio y desarrollo de técnicas GNSS para la monitorización de deformaciones corticales y su campo de velocidades para las islas de Tenerife y La Palma. En su implementación, se ha tenido en cuenta el uso de la infraestructura geodésica y de monitorización existente en el archipiélago a fin de optimizar costes, además de complementarla con nuevas estaciones para dar una cobertura total a las dos islas. Los resultados obtenidos en los proyectos, que se describen en esta memoria, han dado nuevas perspectivas en la monitorización geodésica de la actividad volcánica y nuevas zonas de interés que anteriormente no se conocían en el entorno de las Islas Canarias. Se ha tenido especial cuidado en el tratamiento y propagación de los errores durante todo el proceso de observación, medida y proceso de los datos registrados, todo ello en aras de cuantificar el grado de fiabilidad de los resultados obtenidos. También en este sentido, los resultados obtenidos han sido verificados con otros procedentes de sistemas de observación radar de satélite, incorporando además a este estudio las implicaciones que el uso conjunto de tecnologías radar y GNSS tendrán en un futuro en la monitorización de deformaciones de la corteza terrestre. ABSTRACT Volcanic activity occurs in many aspects of human activity, and not always in a negative manner. Nonetheless, research into volcanic activity is more likely to be motivated by its danger and risk. There are security reasons that influence the monitoring of volcanic activity in order to guarantee the life and safety of human settlements near volcanic edifices. This thesis defines and implements a monitoring system of movements in the Earth’s crust in the islands of Tenerife and La Palma, where the social impact of an increase (or variation) of volcanic activity is very severe. Aside from the high demographic density of the archipelago, the population increases significantly in different periods throughout the year due to tourism, which represents a major source of revenue for the islands. The population and the tourist centres are mainly spread along the coasts and also along the flanks of the volcanic edifices. Perhaps the preservation of these social and socio-economic structures is the most important reason that justifies monitoring volcanic activity in the Canary Islands. Recently more and more work has been done with the intention of predicting volcanic activity, using new geodesic monitoring systems, since volcanic activity is evident prior to eruption because of a deformation of the Earth’s crust and changes in the force of gravity in the zone where volcanic events will later be recorded. The new devices and sensors that have been developed in recent years in areas such as geodesy, the observation of the Earth from space, and satellite positioning have allowed us to observe and measure the deformation produced in the Earth as well as the changes in the force of gravity before, during, and after the volcanic events occur. The new devices and sensors have changed the geodetic techniques and methodologies that were used previously. The classic methods have been renovated and other newer ones developed that are now vouched for as proven recognised methodologies to be used for volcanic monitoring. Since the end of the 1990s, in the Canary Islands various projects have been developed whose principal aim has been the development of new observation and monitoring techniques on the one hand, and the design of an appropriate volcanic monitoring methodology on the other. The study and development of GNSS techniques for the monitoring of crustal deformations and their velocity field is presented here. To carry out the study, the use of geodetic infrastructure and existing monitoring in the archipelago have been taken into account in order to optimise costs, besides complementing it with new stations for total coverage on both islands. The results obtained in the projects, which are described below, have produced new perspectives in the geodetic monitoring of volcanic activity and new zones of interest which previously were unknown in the environment of the Canary Islands. Special care has been taken with the treatment and propagation of errors during the entire process of observing, measuring, and processing the recorded data. All of this was done in order to quantify the degree of trustworthiness of the results obtained. Also in this sense, the results obtained have been verified with others from satellite radar observation systems, incorporating as well in this study the implications that the joint use of radar technologies and GNSS will have for the future of monitoring deformations in the Earth’s crust.
Resumo:
The sulphide mineralisation at Avoca and Parys Mountain is intimately related to volcanism and is of volcanogenic sedimentary type. The associated volcanics are predominantly pyroclastics of rhyodacitic composition and of Upper Ordovician age. They were erupted from discrete small volcanic centres, products of single local volcanic events, whose spatial distribution was related to fractures in the sialic basement of the paratectonic Caledonides of the British Isles. These fractures resulted in linear controls on volcanic, plutonic and tectonic features; they are the result of predominantly strikeslip stresses generated in this part of the European plate during closure of the Iapetus ocean. The mineralisation, predominantly pyritic, consists of a siliceous footwall zone containing bedded and cross-cutting sulphides and an overlying non-siliceous zone of bedded sulphides which may show vertical zoning of metal ratios. The sulphides are associated with chert and iron formation and have been affected by slumping. Mineralisation developed near the vents during intense fumarolic activity accompanying strong volcanism; at Parys Mountain, fumarolic activity commenced prior to, and continued after, the rnain volcanic event. Comparison with similar deposits in Newfoundland and at Bathurst, in the Canadian Appalachians, shows that mineralisation can be associated with any discrete pulse of acid magmatism in shallow subaqueous conditions. Local features of the sulphides and associated sediments are similar, although in more distal deposits (with respect to a volcanic centre) footwall alteration and mineralisation are less well developed. The nature of the basement and the presence or absence of earlier volcanics are not critical, although establishment of a local tensional regime at the time of ore formation may be important. The volcanics hosting mineralisation are rhyodacitic pyroclastics, generally related to a small centre and representing a single episode of volcanism.
Resumo:
During the 1996 Programma Nazionale di Ricerche in Antartide-International Trans-Antarctic Scientific Expedition traverse, two firn cores were retrieved from the Talos Dome area (East Antarctica) at elevations of 2316 m (TD, 89 m long) and 2246 m (ST556, 19 m long). Cores were dated by using seasonal variations in non-sea-salt (nss) SO42- concentrations coupled with the recognition of tritium marker level (1965-1966) and nss SO42- spikes due to the most important volcanic events in the past (Pinatubo 1991, Agung 1963, Krakatoa 1883, Tambora 1815, Kuwae 1452, Unknown 1259). The number of annual layers recognized in the TD and ST556 cores was 779 and 97, respectively. The dD record obtained from the TD core has been compared with other East Antarctic isotope ice core records (Dome C EPICA, South Pole, Taylor Dome). These records suggest cooler climate conditions between the middle of 16th and the beginning of 19th centuries, which might be related to the Little Ice Age (LIA) cold period. Because of the high degree of geographical variability, the strongest LIA cooling was not temporally synchronous over East Antarctica, and the analyzed records do not provide a coherent picture for East Antarctica. The accumulation rate record presented for the TD core shows a decrease during part of the LIA followed by an increment of about 11% in accumulation during the 20th century. At the ST556 site, the accumulation rate observed during the 20th century was quite stable.