991 resultados para visual motion
Resumo:
Photo-mosaicing techniques have become popular for seafloor mapping in various marine science applications. However, the common methods cannot accurately map regions with high relief and topographical variations. Ortho-mosaicing borrowed from photogrammetry is an alternative technique that enables taking into account the 3-D shape of the terrain. A serious bottleneck is the volume of elevation information that needs to be estimated from the video data, fused, and processed for the generation of a composite ortho-photo that covers a relatively large seafloor area. We present a framework that combines the advantages of dense depth-map and 3-D feature estimation techniques based on visual motion cues. The main goal is to identify and reconstruct certain key terrain feature points that adequately represent the surface with minimal complexity in the form of piecewise planar patches. The proposed implementation utilizes local depth maps for feature selection, while tracking over several views enables 3-D reconstruction by bundle adjustment. Experimental results with synthetic and real data validate the effectiveness of the proposed approach
Resumo:
CONCLUSION: Chronic subjective dizziness (CSD) is frequent and affects twice as many women as men. Anxiety is a strong predisposing factor. The pathophysiologic concept of this disorder assumes that balance function and emotion share common neurologic pathways, which might explain that the balance disorder can provoke fear and vice versa, giving rise to a problem in perception of space and motion. In anxious patients this can turn into a space and motion phobia, with avoidance behaviour. OBJECTIVE: CSD is a diagnosis based on the hypothesis of an interaction between the vestibular system and the psychiatric sphere. Patients complain of chronic imbalance, worsened by visual motion stimulation, and frequently suffer from anxiety. Vestibular examination reveals no anomalies. We evaluated the incidence and characteristics of CSD in patients referred to our neuro-otology centre (tertiary hospital outpatient clinic). SUBJECTS AND METHODS: This was a retrospective study of 1552 consecutive patients presenting with vertigo. CSD was diagnosed in 164 patients (female:male=111:53). RESULTS: CSD represents 10.6% of the dizzy patients in our clinic. Psychiatric disorder, mainly anxiety, was found in 79.3% of the cases. Other frequently associated factors were fear of heights and former vestibular lesion (healed). In all, 79.0% of the patients with CSD had poor balance performance on dynamic posturography testing.
Resumo:
Different asymmetries between expansion and contraction (radial motions) have been reported in the literature. Often these patterns have been regarded as implying different channels for each type of radial direction (outward versus inwards) operating at a higher level of visual motion processing. In two experiments (detection and discrimination tasks) we report reaction time asymmetries between expansion and contraction. Power functions were fitted to the data. While an exponent of 0.5 accounted for the expansion data better, a value of unity yielded the best fit for the contraction data. Instead of interpreting these differences as corresponding to different higher order motion detectors, we regard these findings as reflecting the fact that expansion and contraction tap two distinct psychophysical input channels underlying the processing of fast and slow velocities respectively.
L’intégration de la prise de décision visuo-motrice et d’action motrice dans des conditions ambiguës
Resumo:
La prise de décision est un mécanisme qui fait intervenir les structures neuronales supérieures afin d’effectuer un lien entre la perception du signal et l’action. Plusieurs travaux qui cherchent à comprendre les mécanismes de la prise de décision sont menés à divers ni- veaux allant de l’analyse comportementale cognitive jusqu'à la modélisation computationnelle. Le but de ce projet a été d’évaluer d’un instant à l’autre comment la variabilité du signal observé («bruit»), influence la capacité des sujets humains à détecter la direction du mouvement dans un stimulus visuel. Dans ces travaux, nous avons éliminé l’une des sources potentielles de variabilité, la variabilité d’une image à l’autre, dans le nombre de points qui portaient les trois signaux de mouvements cohérents (gauche, droite, et aléatoire) dans les stimuli de Kinématogramme de points aléatoires (KPA), c’est-à-dire la variabilité d’origine périphérique. Les stimuli KPA de type « V6 » étaient des stimuli KPA standard avec une variabilité instantanée du signal, et par contre les stimuli KPA de type « V8 », étaient modifiés pour éliminer la variabilité stochastique due à la variabilité du nombre de pixels d’un instant à l’autre qui portent le signal cohérent. Si la performance des sujets, qui correspond à leur temps de réaction et au nombre de bonnes réponses, diffère en réponse aux stimuli dont le nombre de points en mouvement cohérent varie (V6) ou ne varie pas (V8), ceci serait une preuve que la variabilité d’origine périphérique modulerait le processus décisionnel. Par contre, si la performance des sujets ne diffère pas entre ces deux types de stimuli, ceci serait une preuve que la source majeure de variabilité de performance est d’origine centrale. Dans nos résultats nous avons constaté que le temps de réaction et le nombre de bonnes réponses sont modulés par la preuve nette du mouvement cohérent. De plus on a pu établir qu’en éliminant la variabilité d’origine périphérique définit ci-dessus, on n’observe pas réellement de modification dans les enregistrements. Ce qui nous à amené à penser qu’il n y a pas de distinction claire entre la distribution des erreurs et les bonnes réponses effectuées pour chacun des essais entre les deux stimuli que nous avons utilisé : V6 et V8. C’est donc après avoir mesuré la « quantité d’énergie » que nous avons proposé que la variabilité observée dans les résultats serait probablement d’origine centrale.
Resumo:
Photo-mosaicing techniques have become popular for seafloor mapping in various marine science applications. However, the common methods cannot accurately map regions with high relief and topographical variations. Ortho-mosaicing borrowed from photogrammetry is an alternative technique that enables taking into account the 3-D shape of the terrain. A serious bottleneck is the volume of elevation information that needs to be estimated from the video data, fused, and processed for the generation of a composite ortho-photo that covers a relatively large seafloor area. We present a framework that combines the advantages of dense depth-map and 3-D feature estimation techniques based on visual motion cues. The main goal is to identify and reconstruct certain key terrain feature points that adequately represent the surface with minimal complexity in the form of piecewise planar patches. The proposed implementation utilizes local depth maps for feature selection, while tracking over several views enables 3-D reconstruction by bundle adjustment. Experimental results with synthetic and real data validate the effectiveness of the proposed approach
Resumo:
In an immersive virtual environment, observers fail to notice the expansion of a room around them and consequently make gross errors when comparing the size of objects. This result is difficult to explain if the visual system continuously generates a 3-D model of the scene based on known baseline information from interocular separation or proprioception as the observer walks. An alternative is that observers use view-based methods to guide their actions and to represent the spatial layout of the scene. In this case, they may have an expectation of the images they will receive but be insensitive to the rate at which images arrive as they walk. We describe the way in which the eye movement strategy of animals simplifies motion processing if their goal is to move towards a desired image and discuss dorsal and ventral stream processing of moving images in that context. Although many questions about view-based approaches to scene representation remain unanswered, the solutions are likely to be highly relevant to understanding biological 3-D vision.
Resumo:
Several accounts put forth to explain the flash-lag effect (FLE) rely mainly on either spatial or temporal mechanisms. Here we investigated the relationship between these mechanisms by psychophysical and theoretical approaches. In a first experiment we assessed the magnitudes of the FLE and temporal-order judgments performed under identical visual stimulation. The results were interpreted by means of simulations of an artificial neural network, that wits also employed to make predictions concerning the F LE. The model predicted that a spatio-temporal mislocalisation would emerge from two, continuous and abrupt-onset, moving stimuli. Additionally, a straightforward prediction of the model revealed that the magnitude of this mislocalisation should be task-dependent, increasing when the use of the abrupt-onset moving stimulus switches from a temporal marker only to both temporal and spatial markers. Our findings confirmed the model`s predictions and point to an indissoluble interplay between spatial facilitation and processing delays in the FLE.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
It is clear that the initial analysis of visual motion takes place in the striate cortex, where directionally selective cells are found that respond to local motion in one direction but not in the opposite direction. Widely accepted motion models postulate as inputs to directional units two or more cells whose spatio-temporal receptive fields (RFs) are approximately 90° out of phase (quadrature) in space and in time. Simple cells in macaque striate cortex differ in their spatial phases, but evidence is lacking for the varying time delays required for two inputs to be in temporal quadrature. We examined the space-time RF structure of cells in macaque striate cortex and found two subpopulations of (nondirectional) simple cells, some that show strongly biphasic temporal responses, and others that are weakly biphasic if at all. The temporal impulse responses of these two classes of cells are very close to 90° apart, with the strongly biphasic cells having a shorter latency than the weakly biphasic cells. A principal component analysis of the spatio-temporal RFs of directionally selective simple cells shows that their RFs could be produced by a linear combination of two components; these two components correspond closely in their respective latencies and biphasic characters to those of strongly biphasic and weakly biphasic nondirectional simple cells, respectively. This finding suggests that the motion system might acquire the requisite temporal quadrature by combining inputs from these two classes of nondirectional cells (or from their respective lateral geniculate inputs, which appear to be from magno and parvo lateral geniculate cells, respectively).
Resumo:
Motion discontinuities can signal object boundaries where few or no other cues, such as luminance, colour, or texture, are available. Hence, motion-defined contours are an ecologically important counterpart to luminance contours. We developed a novel motion-defined Gabor stimulus to investigate the nature of neural operators analysing visual motion fields in order to draw parallels with known luminance operators. Luminance-defined Gabors have been successfully used to discern the spatial-extent and spatial-frequency specificity of possible visual contour detectors. We now extend these studies into the motion domain. We define a stimulus using limited-lifetime moving dots whose velocity is described over 2-D space by a Gabor pattern surrounded by randomly moving dots. Participants were asked to determine whether the orientation of the Gabor pattern (and hence of the motion contours) was vertical or horizontal in a 2AFC task, and the proportion of correct responses was recorded. We found that with practice participants became highly proficient at this task, able in certain cases to reach 90% accuracy with only 12 limited-lifetime dots. However, for both practised and novice participants we found that the ability to detect a single boundary saturates with the size of the Gaussian envelope of the Gabor at approximately 5 deg full-width at half-height. At this optimal size we then varied spatial frequency and found the optimum was at the lowest measured spatial frequency (0.1 cycle deg-1 ) and then steadily decreased with higher spatial frequencies, suggesting that motion contour detectors may be specifically tuned to a single, isolated edge.
Resumo:
Neuroimaging studies of cortical activation during image transformation tasks have shown that mental rotation may rely on similar brain regions as those underlying visual perceptual mechanisms. The V5 complex, which is specialised for visual motion, is one region that has been implicated. We used functional magnetic resonance imaging (fMRI) to investigate rotational and linear transformation of stimuli. Areas of significant brain activation were identified for each of the primary mental transformation tasks in contrast to its own perceptual reference task which was cognitively matched in all respects except for the variable of interest. Analysis of group data for perception of rotational and linear motion showed activation in areas corresponding to V5 as defined in earlier studies. Both rotational and linear mental transformations activated Brodman Area (BA) 19 but did not activate V5. An area within the inferior temporal gyrus, representing an inferior satellite area of V5, was activated by both the rotational perception and rotational transformation tasks, but showed no activation in response to linear motion perception or transformation. The findings demonstrate the extent to which neural substrates for image transformation and perception overlap and are distinct as well as revealing functional specialisation within perception and transformation processing systems.
Resumo:
Emerging evidence of the high variability in the cognitive skills and deficits associated with reading achievement and dysfunction promotes both a more dimensional view of the risk factors involved, and the importance of discriminating between trajectories of impairment. Here we examined reading and component orthographic and phonological skills alongside measures of cognitive ability and auditory and visual sensory processing in a large group of primary school children between the ages of 7 and 12 years. We identified clusters of children with pseudoword or exception word reading scores at the 10th percentile or below relative to their age group, and a group with poor skills on both tasks. Compared to age-matched and reading-level controls, groups of children with more impaired exception word reading were best described by a trajectory of developmental delay, whereas readers with more impaired pseudoword reading or combined deficits corresponded more with a pattern of atypical development. Sensory processing deficits clustered within both of the groups with putative atypical development: auditory discrimination deficits with poor phonological awareness skills; impairments of visual motion processing in readers with broader and more severe patterns of reading and cognitive impairments. Sensory deficits have been variably associated with developmental impairments of literacy and language; these results suggest that such deficits are also likely to cluster in children with particular patterns of reading difficulty. © 2012 Elsevier Ltd.
Resumo:
The mappings from grapheme to phoneme are much less consistent in English than they are for most other languages. Therefore, the differences found between English-speaking dyslexics and controls on sensory measures of temporal processing might be related more to the irregularities of English orthography than to a general deficit affecting reading ability in all languages. However, here we show that poor readers of Norwegian, a language with a relatively regular orthography, are less sensitive than controls to dynamic visual and auditory stimuli. Consistent with results from previous studies of English-readers, detection thresholds for visual motion and auditory frequency modulation (FM) were significantly higher in 19 poor readers of Norwegian compared to 22 control readers of the same age. Over two-thirds (68.4%) of the children identified as poor readers were less sensitive than controls to either or both of the visual coherent motion or auditory 2Hz FM stimuli. © 2003 Elsevier Science (USA). All rights reserved.
Resumo:
Functional imaging with intravoxel incoherent motion (IVIM) magnetic resonance imaging (MRI) is demonstrated. Images were acquired at 3 Tesla using a standard Stejskal-Tanner diffusion-weighted echo-planar imaging sequence with multiple b-values. Cerebro-spinal fluid signal, which is highly incoherent, was suppressed with an inversion recovery preparation pulse. IVIM microvascular perfusion parameters were calculated according to a two-compartment (vascular and non-vascular) diffusion model. The results obtained in 8 healthy human volunteers during visual stimulation are presented. The IVIM blood flow related parameter fD* increased 170% during stimulation in the visual cortex, and 70% in the underlying white matter.
Resumo:
This thesis proposes a solution to the problem of estimating the motion of an Unmanned Underwater Vehicle (UUV). Our approach is based on the integration of the incremental measurements which are provided by a vision system. When the vehicle is close to the underwater terrain, it constructs a visual map (so called "mosaic") of the area where the mission takes place while, at the same time, it localizes itself on this map, following the Concurrent Mapping and Localization strategy. The proposed methodology to achieve this goal is based on a feature-based mosaicking algorithm. A down-looking camera is attached to the underwater vehicle. As the vehicle moves, a sequence of images of the sea-floor is acquired by the camera. For every image of the sequence, a set of characteristic features is detected by means of a corner detector. Then, their correspondences are found in the next image of the sequence. Solving the correspondence problem in an accurate and reliable way is a difficult task in computer vision. We consider different alternatives to solve this problem by introducing a detailed analysis of the textural characteristics of the image. This is done in two phases: first comparing different texture operators individually, and next selecting those that best characterize the point/matching pair and using them together to obtain a more robust characterization. Various alternatives are also studied to merge the information provided by the individual texture operators. Finally, the best approach in terms of robustness and efficiency is proposed. After the correspondences have been solved, for every pair of consecutive images we obtain a list of image features in the first image and their matchings in the next frame. Our aim is now to recover the apparent motion of the camera from these features. Although an accurate texture analysis is devoted to the matching pro-cedure, some false matches (known as outliers) could still appear among the right correspon-dences. For this reason, a robust estimation technique is used to estimate the planar transformation (homography) which explains the dominant motion of the image. Next, this homography is used to warp the processed image to the common mosaic frame, constructing a composite image formed by every frame of the sequence. With the aim of estimating the position of the vehicle as the mosaic is being constructed, the 3D motion of the vehicle can be computed from the measurements obtained by a sonar altimeter and the incremental motion computed from the homography. Unfortunately, as the mosaic increases in size, image local alignment errors increase the inaccuracies associated to the position of the vehicle. Occasionally, the trajectory described by the vehicle may cross over itself. In this situation new information is available, and the system can readjust the position estimates. Our proposal consists not only in localizing the vehicle, but also in readjusting the trajectory described by the vehicle when crossover information is obtained. This is achieved by implementing an Augmented State Kalman Filter (ASKF). Kalman filtering appears as an adequate framework to deal with position estimates and their associated covariances. Finally, some experimental results are shown. A laboratory setup has been used to analyze and evaluate the accuracy of the mosaicking system. This setup enables a quantitative measurement of the accumulated errors of the mosaics created in the lab. Then, the results obtained from real sea trials using the URIS underwater vehicle are shown.