996 resultados para virtual prototype
Resumo:
Automated virtual camera control has been widely used in animation and interactive virtual environments. We have developed a multiple sparse camera based free view video system prototype that allows users to control the position and orientation of a virtual camera, enabling the observation of a real scene in three dimensions (3D) from any desired viewpoint. Automatic camera control can be activated to follow selected objects by the user. Our method combines a simple geometric model of the scene composed of planes (virtual environment), augmented with visual information from the cameras and pre-computed tracking information of moving targets to generate novel perspective corrected 3D views of the virtual camera and moving objects. To achieve real-time rendering performance, view-dependent textured mapped billboards are used to render the moving objects at their correct locations and foreground masks are used to remove the moving objects from the projected video streams. The current prototype runs on a PC with a common graphics card and can generate virtual 2D views from three cameras of resolution 768 x 576 with several moving objects at about 11 fps. (C)2011 Elsevier Ltd. All rights reserved.
Resumo:
This thesis proposes a novel technology in the field of swarm robotics that allows a swarm of robots to sense a virtual environment through virtual sensors. Virtual sensing is a desirable and helpful technology in swarm robotics research activity, because it allows the researchers to efficiently and quickly perform experiments otherwise more expensive and time consuming, or even impossible. In particular, we envision two useful applications for virtual sensing technology. On the one hand, it is possible to prototype and foresee the effects of a new sensor on a robot swarm, before producing it. On the other hand, thanks to this technology it is possible to study the behaviour of robots operating in environments that are not easily reproducible inside a lab for safety reasons or just because physically infeasible. The use of virtual sensing technology for sensor prototyping aims to foresee the behaviour of the swarm enhanced with new or more powerful sensors, without producing the hardware. Sensor prototyping can be used to tune a new sensor or perform performance comparison tests between alternative types of sensors. This kind of prototyping experiments can be performed through the presented tool, that allows to rapidly develop and test software virtual sensors of different typologies and quality, emulating the behaviour of several hardware real sensors. By investigating on which sensors is better to invest, a researcher can minimize the sensors’ production cost while achieving a given swarm performance. Through augmented reality, it is possible to test the performance of the swarm in a desired virtual environment that cannot be set into the lab for physical, logistic or economical reasons. The virtual environment is sensed by the robots through properly designed virtual sensors. Virtual sensing technology allows a researcher to quickly carry out real robots experiment in challenging scenarios without all the required hardware and environment.
Resumo:
The usage of social media in leisure time settings has become a prominent research topic. However, less research has been done on the design of social media in collaboration settings. In this study, we investigate how social media can support asynchronous collaboration in virtual teams and specifically how they can increase activity awareness. On the basis of an open source social networking platform, we present two prototype designs: a standard platform with basic support for information processing, communication and process – as suggested by Zigurs and Buckland (1998) – and an advanced platform with additional support for activity awareness via specialfeed functions. We argue that the standard platform already conveys activity awareness to a certain extent, however, that this awareness can be increased even more by the feeds in the advanced platform. Both prototypes are tested in a field experiment and evaluated with respect to their impact on perceived activity awareness, coordination and satisfaction. We show that the advanced design increases coordination and satisfaction through increased perceived activity awareness.
Experimental Prototype Merging Stereo Panoramic Video and Interactive 3D Content in a 5-sided CAVETM
Resumo:
Immersion and interaction have been identified as key factors influencing the quality of experience in stereoscopic video systems. An experimental prototype designed to explore the influence of these factors in 3D video applications is described here1. The focus is on the real-time insertion algorithm of new 3D models into the original video streams. Using this algorithm, our prototype is aimed to explore a new interaction paradigm ? similar to the augmented reality approach ? with 3D video applications.
Resumo:
The use of 3D imaging techniques has been early adopted in the footwear industry. In particular, 3D imaging could be used to aid commerce and improve the quality and sales of shoes. Footwear customization is an added value aimed not only to improve product quality, but also consumer comfort. Moreover, customisation implies a new business model that avoids the competition of mass production coming from new manufacturers settled mainly in Asian countries. However, footwear customisation implies a significant effort at different levels. In manufacturing, rapid and virtual prototyping is required; indeed the prototype is intended to become the final product. The whole design procedure must be validated using exclusively virtual techniques to ensure the feasibility of this process, since physical prototypes should be avoided. With regard to commerce, it would be desirable for the consumer to choose any model of shoes from a large 3D database and be able to try them on looking at a magic mirror. This would probably reduce costs and increase sales, since shops would not require storing every shoe model and the process of trying several models on would be easier and faster for the consumer. In this paper, new advances in 3D techniques coming from experience in cinema, TV and games are successfully applied to footwear. Firstly, the characteristics of a high-quality stereoscopic vision system for footwear are presented. Secondly, a system for the interaction with virtual footwear models based on 3D gloves is detailed. Finally, an augmented reality system (magic mirror) is presented, which is implemented with low-cost computational elements that allow a hypothetical customer to check in real time the goodness of a given virtual footwear model from an aesthetical point of view.
Resumo:
Virtual learning environments (VLEs) are computer-based online learning environments, which provide opportunities for online learners to learn at the time and location of their choosing, whilst allowing interactions and encounters with other online learners, as well as affording access to a wide range of resources. They have the capability of reaching learners in remote areas around the country or across country boundaries at very low cost. Personalized VLEs are those VLEs that provide a set of personalization functionalities, such as personalizing learning plans, learning materials, tests, and are capable of initializing the interaction with learners by providing advice, necessary instant messages, etc., to online learners. One of the major challenges involved in developing personalized VLEs is to achieve effective personalization functionalities, such as personalized content management, learner model, learner plan and adaptive instant interaction. Autonomous intelligent agents provide an important technology for accomplishing personalization in VLEs. A number of agents work collaboratively to enable personalization by recognizing an individual's eLeaming pace and reacting correspondingly. In this research, a personalization model has been developed that demonstrates dynamic eLearning processes; secondly, this study proposes an architecture for PVLE by using intelligent decision-making agents' autonomous, pre-active and proactive behaviors. A prototype system has been developed to demonstrate the implementation of this architecture. Furthemore, a field experiment has been conducted to investigate the performance of the prototype by comparing PVLE eLearning effectiveness with a non-personalized VLE. Data regarding participants' final exam scores were collected and analyzed. The results indicate that intelligent agent technology can be employed to achieve personalization in VLEs, and as a consequence to improve eLeaming effectiveness dramatically.
Resumo:
This study describes the development of a prototype to evaluate the potential of environments based on two-dimensional modeling and virtual reality as power substations learning objects into training environments from a central operation and control of power utility Cemig. Initially, there was an identification modeling features and cognitive processes in 2D and RV, from which it was possible to create frames that serve to guide the preparation of a checklist with assigning a metric weight for measuring cognitive potential learning in the study sites. From these contents twenty-four questions were prepared and each was assigned a weight that was used in the calculation of the metric; the questions were grouped into skill sets and similar cognitive processes called categories. Were then developed two distinct environments: the first, the prototype features an interactive checklist and your individual results. And, second, a system of data management environment for the configuration and editing of the prototype, and the observation and analysis of the survey results. For prototype validation, were invited to access the virtual checklist and answer it, five professionals linked to Cemig's training area. The results confirmed the validity of this instrument application to assess the possible potential of modeling in 2D and RV as learning objects in power substations, as well as provide feedback to developers of virtual environments to improve the system.
Resumo:
In acoustic instruments, the controller and the sound producing system often are one and the same object. If virtualacoustic instruments are to be designed to not only simulate the vibrational behaviour of a real-world counterpart but also to inherit much of its interface dynamics, it would make sense that the physical form of the controller is similar to that of the emulated instrument. The specific physical model configuration discussed here reconnects a (silent) string controller with a modal synthesis string resonator across the real and virtual domains by direct routing of excitation signals and model parameters. The excitation signals are estimated in their original force-like form via careful calibration of the sensor, making use of adaptive filtering techniques to design an appropriate inverse filter. In addition, the excitation position is estimated from sensors mounted under the legs of the bridges on either end of the prototype string controller. The proposed methodology is explained and exemplified with preliminary results obtained with a number of off-line experiments.
Resumo:
O avanço das tecnologias de informação continua a mudar os paradigmas de ensino e aprendizagem. Os meios disponíveis são cada vez mais diversificados e, com a necessidade de procurar novos estudantes e diversificar o público-alvo, as instituições de ensino superior estão a repensar os seus modelos de negócio e estratégias pedagógicas. A proliferação de dispositivos móveis catalisa uma aposta crescente no ensino a distância (EaD) no sentido de proporcionar aprendizagens em mobilidade (m-learning). No entanto, as soluções existentes para m-learning são ainda pouco adaptadas às recentes metodologias de EaD, na maioria das vezes funcionando como extensão de um ambiente virtual de aprendizagem ou com muito foco nos conteúdos. Sendo a Universidade Aberta (UAb) a única instituição de ensino superior público em Portugal de ensino a distância, com um modelo pedagógico próprio, constitui um natural caso de aplicação de tecnologia móvel em novos contextos de aprendizagem, importando por isso estudar e desenhar os mecanismos de interação mais adequados com professores e estudantes em mobilidade. Adotou-se neste trabalho a metodologia Design Science Research, tendo sido identificadas as características e comportamentos de potenciais utilizadores, e definidas as funcionalidades que devem ser disponibilizadas na primeira versão de uma aplicação para dispositivos móveis (app) no contexto do ensino a distância. É proposto o design da interface dessa app, usando o modelo da UAb como caso de aplicação, e disponibilizada uma lista de orientações para o desenvolvimento do protótipo funcional. Da investigação realizada, concluiu-se que a interface proposta constitui um modelo válido para o desenho de uma app para aprendizagens em mobilidade, no regime de ensino de uma universidade virtual. A partir deste modelo, as instituições de ensino superior podem desenvolver apps adaptando-se ao avanço das Tecnologias de Informação e Comunicação e ficarem alinhadas com as necessidades dos seus alunos e docentes, particularmente se dispuserem de oferta formativa a distância.
Resumo:
We have shown how the analysis of the angiotomography reconstruction through OsiriX program has assisted in endovascular perioperative programming. We presented its application in situations when an unexpected existence of metallic overlapping artifact (orthopedic osteosynthesis) compromised the adequate visualization of the arterial lesion during the procedure. Through manipulation upon OsiriX software, with assistance of preview under virtual fluoroscopy, it was possible to obtain the angles that would avoid this juxtaposition. These angles were reproduced in the C-arm, allowing visualization of the occluded segment, reducing the need for repeated image acquisitions and contrast overload, allowing the continuation of the procedure.
Resumo:
The text describes a study about the adoption of virtual learning environments and its consequences to the learning process of undergraduate students at the State University of Campinas - Unicamp. These environments can be incorporated in various ways into the academic daily life of students and teachers. One efficient way to promote the adoption of these environments, as observed by the Distance Learning support team, is to train teachers and students in their use. Two training alternatives are described in this text to instruct the academic community in the use of TelEduc, a freeware developed and coordinated by the NIED - Núcleo de Informática Aplicada à Educação (Center for Information Technology Applied to Education), and officially adopted by Unicamp. Training courses are offered in two ways - presence or distance learning - to suit each teacher's preferences. This article compares the two modes of training, showing their strong and weak points. The adoption of TelEduc and its direct consequences to the learning process are described in a study carried out with some engineering undergraduates at Unicamp. The authors' questions and the general views of teachers and students regarding the effectiveness of the use of TelEduc as a supporting tool to presence teaching are presented. This investigation revealed the importance of training teachers in the effective use of these environments.
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
Introduction. The ToLigado Project - Your School Interactive Newspaper is an interactive virtual learning environment conceived, developed, implemented and supported by researchers at the School of the Future Research Laboratory of the University of Sao Paulo, Brazil. Method. This virtual learning environment aims to motivate trans-disciplinary research among public school students and teachers in 2,931 schools equipped with Internet-access computer rooms. Within this virtual community, students produce collective multimedia research documents that are immediately published in the portal. The project also aims to increase students' autonomy for research, collaborative work and Web authorship. Main sections of the portal are presented and described. Results. Partial results of the first two years' implementation are presented and indicate a strong motivation among students to produce knowledge despite the fragile hardware and software infrastructure at the time. Discussion. In this new environment, students should be seen as 'knowledge architects' and teachers as facilitators, or 'curiosity managers'. The ToLigado portal may constitute a repository for future studies regarding student attitudes in virtual learning environments, students' behaviour as 'authors', Web authorship involving collective knowledge production, teachers' behaviour as facilitators, and virtual learning environments as digital repositories of students' knowledge construction and social capital in virtual learning communities.
Resumo:
As technology improves human vision, some procedures currently performed may be causing a decrease of the natural UV protection of the cornea. A portable dual beam system prototype was assembled for physicians for clinical studies of these effects on the corneas endowing two types of 300-400 nm evaluations: 1, regularly donated corneas and 2, simulating refractive keratectomy by corneal lamellae removal. The system performs 500 measurements/s, providing +/- 0.25% precision for the transmittance. The measurements performed on the prototype are 95% in agreement with Cary 17 and HR4000CG-UV-NIR Ocean Optics spectrophotometers. Preliminary studies on cadaveric corneas demonstrate that, as the stromal layer is reduced (similar to 150 mu m depth), there is significant loss-an average of 7.1%.-of the cornea's natural UV protection. The prototype is being tested in an eye bank for routine evaluation of donor corneas. (C) 2010 Optical Society of America