936 resultados para vicinal single crystal surfaces
Resumo:
The solid-state pyrolysis of organometallic derivatives of a cyclotriphosphazene is demonstrated to be a new, simple and versatile solid-state templating method for obtaining single-crystal micro- and nanocrystals of transition and valve metal oxides. The technique, when applied to Mo-containing organometallics N3P3[OC6H4CH2CN·Mo(CO)5]6 and N3P3[OC6H4CH2CN·Mo(CO)4 py]6, results in stand-alone and surface-deposited lamellar MoO3 single crystals, as determined by electron and atomic force microscopies and X-ray diffraction. The size and morphology of the resulting crystals can be tuned by the composition of the precursor. X-ray photoelectron and infrared spectroscopies indicate that the deposition of highly lamellar MoO3 directly on an oxidized (400 nm SiO2) surface or (100) single-crystal silicon surfaces yields a layered uniphasic single-crystal film formed by cluster diffusion on the surface during pyrolysis of the metal-carbonyl derivatives. For MoO3 in its layered form, this provides a new route to an important intercalation material for high energy density battery materials.
Resumo:
A primary goal of this dissertation is to understand the links between mathematical models that describe crystal surfaces at three fundamental length scales: The scale of individual atoms, the scale of collections of atoms forming crystal defects, and macroscopic scale. Characterizing connections between different classes of models is a critical task for gaining insight into the physics they describe, a long-standing objective in applied analysis, and also highly relevant in engineering applications. The key concept I use in each problem addressed in this thesis is coarse graining, which is a strategy for connecting fine representations or models with coarser representations. Often this idea is invoked to reduce a large discrete system to an appropriate continuum description, e.g. individual particles are represented by a continuous density. While there is no general theory of coarse graining, one closely related mathematical approach is asymptotic analysis, i.e. the description of limiting behavior as some parameter becomes very large or very small. In the case of crystalline solids, it is natural to consider cases where the number of particles is large or where the lattice spacing is small. Limits such as these often make explicit the nature of links between models capturing different scales, and, once established, provide a means of improving our understanding, or the models themselves. Finding appropriate variables whose limits illustrate the important connections between models is no easy task, however. This is one area where computer simulation is extremely helpful, as it allows us to see the results of complex dynamics and gather clues regarding the roles of different physical quantities. On the other hand, connections between models enable the development of novel multiscale computational schemes, so understanding can assist computation and vice versa. Some of these ideas are demonstrated in this thesis. The important outcomes of this thesis include: (1) a systematic derivation of the step-flow model of Burton, Cabrera, and Frank, with corrections, from an atomistic solid-on-solid-type models in 1+1 dimensions; (2) the inclusion of an atomistically motivated transport mechanism in an island dynamics model allowing for a more detailed account of mound evolution; and (3) the development of a hybrid discrete-continuum scheme for simulating the relaxation of a faceted crystal mound. Central to all of these modeling and simulation efforts is the presence of steps composed of individual layers of atoms on vicinal crystal surfaces. Consequently, a recurring theme in this research is the observation that mesoscale defects play a crucial role in crystal morphological evolution.
Resumo:
Single-point diamond turning of monocrystalline semiconductors is an important field of research within brittle materials machining. Monocrystalline silicon samples with a (100) orientation have been diamond turned under different cutting conditions (feed rate and depth of cut). Micro-Raman spectroscopy and atomic force microscopy have been used to assess structural alterations and surface finish of the samples diamond turned under ductile and brittle modes. It was found that silicon undergoes a phase transformation when machined in the ductile mode. This phase transformation is evidenced by the creation of an amorphous surface layer after machining which has been probed by Raman scattering. Compressive residual stresses are estimated for the machined surface and it is observed that they decrease with an increase in the feed rate and depth of cut. This behaviour has been attributed to the formation of subsurface cracks when the feed rate is higher than or equal to 2.5 mu m/rev. The surface roughness was observed to vary with the feed rate and the depth of cut. An increase in the surface roughness was influenced by microcrack formation when the feed rate reached 5.0 mu m/rev. Furthermore, a high-pressure phase transformation induced by the tool/material interaction and responsible for the ductile response of this typical brittle material is discussed based upon the presented Raman spectra. The application of this machining technology finds use for a wide range of high quality components, for example the creation of a micrometre-range channel for microfluidic devices as well as microlenses used in the infrared spectrum range.
Resumo:
A niobium single crystal was subjected to equal channel angular pressing (ECAP) at room temperature after orienting the crystal such that [1 -1 -1] ayen ND, [0 1 -1] ayen ED, and [-2 -1 -1] ayen TD. Electron backscatter diffraction (EBSD) was used to characterize the microstructures both on the transverse and the longitudinal sections of the deformed sample. After one pass of ECAP the single crystal exhibits a group of homogeneously distributed large misorientation sheets and a well formed cell structure in the matrix. The traces of the large misorientation sheets match very well with the most favorably oriented slip plane and one of the slip directions is macroscopically aligned with the simple shear plane. The lattice rotation during deformation was quantitatively estimated through comparison of the orientations parallel to three macroscopic axes before and after deformation. An effort has been made to link the microstructure with the initial crystal orientation. Collinear slip systems are believed to be activated during deformation. The full constraints Taylor model was used to simulate the orientation evolution during ECAP. The result matched only partially with the experimental observation.
Resumo:
We report complex ac magnetic susceptibility measurements of a superconducting transition in very high-quality single-crystal alpha-uranium using microfabricated coplanar magnetometers. We identify an onset of superconductivity at Tapproximate to0.7 K in both the real and imaginary components of the susceptibility which is confirmed by resistivity data. A superconducting volume fraction argument, based on a comparison with a calibration YBa2Cu3O7-delta sample, indicates that superconductivity in these samples may be filamentary. Our data also demonstrate the sensitivity of the coplanar micro-magnetometers, which are ideally suited to measurements in pulsed magnetic fields exceeding 100 T.
Resumo:
Low-temperature (15 K) single-crystal neutron-diffraction structures and Raman spectra of the salts (NX4)(2)[CU(OX2)(6)](SO4)(2), where X = H or D, are reported. This study is concerned with the origin of the structural phase change that is known to occur upon deuteration. Data for the deuterated salt were measured in the metastable state, achieved by application of 500 bar of hydrostatic pressure at similar to303 K followed by cooling to 281 K and the subsequent release of pressure. This allows for the direct comparison between the hydrogenous and deuterated salts, in the same modification, at ambient pressure and low temperature. The Raman spectra provide no intimation of any significant change in the intermolecular bonding. Furthermore, structural differences are few, the largest being for the long Cu-O bond, which is 2.2834(5) and 2.2802(4) Angstrom for the hydrogenous and the deuterated salts, respectively. Calorimetric data for the deuterated salt are also presented, providing an estimate of 0.17(2) kJ/mol for the enthalpy difference between the two structural forms at 295.8(5) K. The structural data suggest that substitution of hydrogen for deuterium gives rise to changes in the hydrogen-bonding interactions that result in a slightly reduced force field about the copper(II) center. The small structural differences suggest different relative stabilities for the hydrogenous and deuterated salts, which may be sufficient to stabilize the hydrogenous salt in the anomalous structural form.
Resumo:
Stress-strain trajectories associated with pseudoelastic behavior of a Cu¿19.4 Zn¿13.1 Al (at.%) single crystal at room temperature have been determined experimentally. For a constant cross-head speed the trajectories and the associated hysteresis behavior are perfectly reproducible; the trajectories exhibit memory properties, dependent only on the values of return points, where transformation direction is reverted. An adapted version of the Preisach model for hysteresis has been implemented to predict the observed trajectories, using a set of experimental first¿order reversal curves as input data. Explicit formulas have been derived giving all trajectories in terms of this data set, with no adjustable parameters. Comparison between experimental and calculated trajectories shows a much better agreement for descending than for ascending paths, an indication of a dissymmetry between the dissipation mechanisms operative in forward and reverse directions of martensitic transformation.
Resumo:
The magnetic properties of BaFe12O19 and BaFe10.2Sn0.74Co0.66O19 single crystals have been investigated in the temperature range (1.8 to 320 K) with a varying field from -5 to +5 T applied parallel and perpendicular to the c axis. Low-temperature magnetic relaxation, which is ascribed to the domain-wall motion, was performed between 1.8 and 15 K. The relaxation of magnetization exhibits a linear dependence on logarithmic time. The magnetic viscosity extracted from the relaxation data, decreases linearly as temperature goes down, which may correspond to the thermal depinning of domain walls. Below 2.5 K, the viscosity begins to deviate from the linear dependence on temperature, tending to be temperature independent. The near temperature independence of viscosity suggests the existence of quantum tunneling of antiferromagnetic domain wall in this temperature range.
Resumo:
In this article the main possibilities of single crystal and powder diffraction analysis using conventional laboratory x-ray sources are introduced. Several examples of applications with different solid samples and in different fields of applications are shown illustrating the multidisciplinary capabilities of both techniques.
Resumo:
A simple and most promising oxide-assisted catalyst-free method is used to prepare silicon nitride nanowires that give rise to high yield in a short time. After a brief analysis of the state of the art, we reveal the crucial role played by the oxygen partial pressure: when oxygen partial pressure is slightly below the threshold of passive oxidation, a high yield inhibiting the formation of any silica layer covering the nanowires occurs and thanks to the synthesis temperature one can control nanowire dimensions
Resumo:
PreVi011.3 ':i or~ : indicat e('. tk~t ho t~)rE's sed ~-Al B 12 1i~2, ~' a semiconductor. r:Toreove r , the s i mpl.(~ electronic t heory also indi cates that ~ -AIB1 2 should be a semico nductor, since thf're is one nonbonding e 'Le ctrofl per AlB12- uni t. JPor these reasons, we decided to measure t he electrical n ropert i ~ s of ~ -AlB1 2 single crystal s . Singl e crystal s of¥- AIB 12 ab ou t 1 x 1 r1n1 . size were grown from a copper mel t at 12500 C. The melt technique coupled. 1,vi th slow cooling vilas used because of i ts advantages such as : siTYInle set- up of the expe rimon t ; only e ;l.sil y available c hemi cals are required and it i s a c omparatively strair::bt forvvard y,le t hod still yielding crystal s big enouGh for OtU' purpose . Copper rms used as a solvent , i nst8ad of previOl.wly used aluminum , because it allows c.l.'ystal growth at hig he r t emneratures. HovlGver, the cry s tals of ] -AlB12 shm'red very hi gh res i s t ance a t r oom temperature . From our neasureJ'lents we conclude that the r esistivity of j3- Al B12 is, at least, given as ~ = 4. x 107 oblD .em •• Those results are inc ons i s t ent wi 'uh the ones .. reported by IIiss Khin fo r bot- pressed j3-AlB12 g i ven a s = 7600 ohm . em . or I e s s . ' Since tbe hot pressing was done at about 800 - ' 9000C i n ~ rap hi te moul ds 1,7i th 97% AlB12- p oVJder, vie thi nk there is pas s ib i 1 i ty th a.t lower borides or borot] carbide are , being formed, ':.Jhich are k11 own to be good semiconductors . v7e tried to ro-pe r-AlB12 by addi'J,'?: agents s uch as l:Ig , IG.-InO 4. ' HgS04 , KI12PO 4·' etc. to t he melt .. However , all these re age 11 t eel either reduced the yield and size of t lJe crystals or r;ave crystals of high r esis'can ce again. We think tba t molten copper keeps t he i mpurities off . There is also a pos s i bil i ty t hc:!,t these doping agents get oxidi~::;ed at '1 250°C • Hence, we co ~ clud e that J -AIB12 has v~ ry high r es i stance at r oom temperature . This was a l s o C011 - fi rmed by checki ng the siYlgle and. polycrystals of .~-AIB12 from Norton Co., Ontario and Cooper Nletallurgical Association. Boron carbide has been reported to be a semiconductor with ~ - 0.3 to 0.8 ohm . cm. for hotpres sed s araples. Boron carbide b e inq: struct urally related to ¥-AIB12 , we de cided to study the electrical prone rties of it~ Single crystals. These crystals were cut from a Single melt grovvn crystal a t Norton Co., Ontario. The resistivity of th," se crystal s was measured by the Van der Pam-v' s ~ nethod, which \vas very c onvenient fo r our crystal sha-pp.s. Some of the crystals showed resistivity ~ == 0.50 ob,Tn.cr] . i n agreement with the previously reported results . However , a few crystals showed lower resistivity e.g . 0 .13 and 0.20 ohm.cra • • The Hall mobility could .not be measured and th8reiore i s lower than 0 .16 em 2 v - 1 sec -1 • This is in agreement \vith t he re1)orted Hall mobility for pyrolytic boron . _ 2 -1 -1 carbide as 0.13 cm v sec • We also studied the orientation of the boron carbide crystals by the Jjaue-method. The inclination of c-axis with res pect to x-ray be81Il was det ermined . This was found to be 100 t o 20° f or normal resistivity sarnples (0.5 ohm . cm.) and 27 - 30° for t he lower r esistivity samples (0.1 ~5 to 0.20 ohm.cm .). This indica tes the possibility that th.e r es if.1tivity of B13C3 i s orientation dependent.
Resumo:
The Bi2Sr2CaCu20g single crystal with a superconducting transition temperature equal to 90 ± 2 K was prepared. The irreversibility line of the single crystal for a mgnetic field direction along the c-axis and T* in the ab-plane was determined. The reduced temperature (l - T ) is proportional to H 1.1 for fields below 004 T and proportional to HO.09 for fields above 0.4 T. The zero temperature upper critical field Hc2(0) and coherence length ~ (0) were determined from the magnetization meaurements to be H-lC2=35.9T , H//C2=31.2T, ~c(0)=35.0 A, and ~ab(0)=32.5A,and from the magnetoresistance measurements to be H-lc2 = 134.6T , H//C2=55.5T '~c(0)=38.1 A, and ~ab(0)=2404 A for both directions of the applied magnetic field. The results obtained for Hc2(0) and ~(O) are not reliable due to the rounding that the single crystal exhibits in the magnetization and magnetoresistance curves. The magnetization relaxation of the single crystal was investigated, and was found to be logarithmic in time, and the relaxation rate increases with temperature up to 50 -60 K, then decreases at higher temperatures.
Resumo:
The magnetic properties of BaFe12O19 and BaFe10.2Sn0.74Co0.66O19 single crystals have been investigated in the temperature range (1.8 to 320 K) with a varying field from -5 to +5 T applied parallel and perpendicular to the c axis. Low-temperature magnetic relaxation, which is ascribed to the domain-wall motion, was performed between 1.8 and 15 K. The relaxation of magnetization exhibits a linear dependence on logarithmic time. The magnetic viscosity extracted from the relaxation data, decreases linearly as temperature goes down, which may correspond to the thermal depinning of domain walls. Below 2.5 K, the viscosity begins to deviate from the linear dependence on temperature, tending to be temperature independent. The near temperature independence of viscosity suggests the existence of quantum tunneling of antiferromagnetic domain wall in this temperature range.