971 resultados para vegetable oils


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Densities and viscosities of five vegetable oils (Babassu oil, Buriti oil, Brazil nut oil, macadamia oil, and grape seed oil) and of three blends of Buriti oil and soybean oil were measured as a function of temperature and correlated by empirical equations. The estimation capability of two types of predictive methodologies was tested using the measured data. The first group of methods was based on the fatty acid composition of the oils, while the other was based on their triacylglycerol composition, as a multicomponent system. In general, the six models tested presented a good representation of the physical properties considered in this work. A simple method of calculation is also proposed to predict the dynamic viscosity of methyl and ethyl ester biodiesels, based on the fatty acid composition of the original oil. Data presented in this work and the developed model can be valuable for designing processes and equipment for the edible oil industry and for biodiesel production.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Amazonian oils and fats display unique triacylglycerol (TAG) profiles and, because of their economic importance as renewable raw materials and use by the cosmetic and food industries, are often subject to adulteration and forgery. Representative samples of these oils (andiroba, Brazil nut, buriti, and passion fruit) and fats (cupuacu, murumuru, and ucuba) were characterized without pre-separation or derivatization via dry (solvent-free) matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). Characteristic profiles of TAG were obtained for each oil and tat. Dry MALDI-TOF MS provides typification and direct and detailed information, via TAG profiles, of their variable combinations of fatty acids. A database from spectra could be developed and may be used for their fast and reliable typification, application screening, and quality control.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It has been consistently reported that vegetable oils including canola oil have a life shortening effect in Stroke-Prone Spontaneously Hypertensive Rats (SHRSP) and this toxic effect is not due to the fatty acid composition of the oil. Although it is possible that the phytosterol content or type of phytosterol present in vegetable oils may play some role in the life shortening effect observed in SHRSP rats this is still not completely resolved. Furthermore supercritical CO2 fractionation of canola oil with subsequent testing in SHRSP rats identified safe and toxic fractions however, the compounds responsible for life shortening effect were not characterised. The conventional approach to screen toxic substances in oils using rats takes more than six months and involves large number of animals. In this article we describe how rapid bioassay-guided screening could be used to identify toxic substances derived from vegetable oils and/or processed foods fortified with vegetable oils. The technique incorporates sequential fractionation of oils/processed foods and subsequent treatment of human cell lines that can be used in place of animal studies to determine cytotoxicity of the fractions with structural elucidation of compounds of interest determined via HPLC-MS and GC-MS. The rapid bioassay-guided screening proposed would require two weeks to test multiple fractions from oils, compared with six months if animal experiments were used to screen toxic effects. Fractionation of oil before bio-assay enhances the effectiveness of the detection of active compounds as fractionation increases the relative concentration of minor components.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rapeseed (canola) and other monounsaturated fatty acid (MUFA)-rich oils are viewed as good candidates to replace, at least partially, the fish oil normally included in aquaculture feeds (aquafeeds). In fact, their utilization as a dietary lipid source for aquatic animals has some advantages over other readily available terrestrial alternative oils and fats; however, this is not without difficulties. MUFA are, indeed, easily digestible and a good source of available energy, and their deposition into fish flesh is considered to be less detrimental than other fatty acid classes, from a human nutritional viewpoint. This chapter attempts to review the principal information available regarding the utilization of MUFA-rich vegetable oil (VO) in aquaculture feed. Initially the chapter focuses on the rapeseed oil eRa) industry, agronomy, quality improvement, processing, and uses, and the main chemical and physical characteristics of rapeseed oil and other MUFA-rich va such as olive oil, peanut oil, and rice bran oil, amongst others. Following this, the potential advantages and challenges of using these alternative oils in the aquaculture feed industry are presented and discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

α-Linseed, camelina. perilla, and echium oils are n-3 C18 polyunsaturated fatty acid (PUFA)-rich vegetable oil sources viewed as favorable replacements to fish oil in aquaculture feed (aquafeed) production in consideration of their high (α-linolenic acid (ALA, 18:3n-3) and/or stearidonic acid (SDA, 18:4n-3) contents and potential for subsequent bioconversion to n-3 long-chain polyunsaturated fatty acids (LC-PUFA) in farmed aquatic species. While the total production of these oils is currently low in comparison with that of other terrestrial oil sources, their distinct fatty acid composition and high n-3 to n-6 ratio deliver a unique substitute to fish oil in aquafeeds, presently unparalleled in other alternative terrestrial oil sources. The dietary inclusion of these oil sources has therefore attracted significant research attention, resulting in a multitude of investigations across a broad range of aquatic species (finfish and crustaceans). Generally, providing that the essential fatty acid (EFA) requirements of the species under investigation were met and an adequate level of fish meal was present in the diet, it was found possible to replace 100% and 60-70% of the dietary fish oil component for freshwater and marine species, respectively, with minimal impact on growth performance indices. However, the substitution of fish oil with n-3-rich vegetable oils and/or vegetable oil blends resulted in substantially reduced concentrations of health-promoting eicosapentaenoic acid (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3) in the edible portion of the farmed species. This chapter provides an overview of the use of n-3 PUFA-rich vegetable oils and/or vegetable oil blends for use in aquafeeds. In particular, key aspects of oil production, processing, and refinement will be presented, and individual differences pertaining to the physical, chemical, and nutritional characteristics of the oil types will be highlighted. Following on from this, a summary of the key findings relevant to n-3 PUFA-rich vegetable oil inclusion in aquafeeds will be discussed, with particular emphasis placed on growth performance and nutritional modification.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background
The effects of fish oil (FO) supplementation and the dietary replacement of FO with flaxseed oil (FlaxO) and canola oil (CO) on the growth of cultured abalone was investigated. The study involved three growth experiments: (E1) diets containing 0.5, 1.0, 1.5, 2.0 and 2.5% of FO, respectively; (E2) diets in which FO was serially replaced by 25, 50, 75 and 100% FlaxO, respectively; and (E3) diets in which FO was serially replaced by 25, 50, 75 and 100% CO, respectively.

Results
In Experiment 1, abalone fed a diet supplemented with 1.5% FO showed a significantly higher (121.2 ± 1.1 mg day−1) daily growth rate of weight (DGRw) compared to control (70.1 ± 1.71 mg day−1). In Experiment 2, abalone fed 1.5% FO diet and diets containing 25–75% FlaxO showed no significant differences in DGRw. The diet containing 100% FlaxO showed significantly lower (63.3 ± 6.7 mg day−1) DGRw. In Experiment 3, abalone fed diets containing 25% and 50% CO showed similar DGRw as those fed a 1.5% FO diet. The diet containing 75% and 100% CO showed significantly lower (63.7 ± 5.0 to 95.4 ± 5.1 mg day−1) DGRw.

Conclusion
Supplementation with 1.5% of dietary FO can improve growth performance in cultured abalone. It is feasible to replace 75% of dietary FO with FlaxO and 50% of dietary FO with CO, without negative effect on growth performance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Vegetable oils and their derivatives, like biodiesel, are used extensively throughout the world, thus posing an environmental risk when disposed. Toxicity testing using test organisms shows how these residues affect ecosystems. Toxicity tests using earthworms (Eisenia foetida. are widespread because they are a practical resource for analyzing terrestrial organisms. For phytotoxicological analysis, we used seeds of arugula (Eruca sativa and lettuce (Lactuca sativa. to analyze the germination of seeds in contaminated soil samples. The toxicological experiment was conducted with four different periods of biodegradation in soil: zero days, 60 days, 120 days and 180 days. The studied contaminants were soybean oil (new and used) and biodiesel (B100). An evaluation of the germination of both seeds showed an increased toxicity for all contaminants as the biodegradation occurred, biodiesel being the most toxic among the contaminants. on the other hand, for the tests using earthworms, the biodiesel was the only contaminant that proved to be toxic. Therefore, the higher toxicity of the sample containing these hydrocarbons over time can be attributed to the secondary compounds formed by microbial action. Thus, we conclude that the biodegradation in soil of the studied compounds requires longer periods for the sample toxicity to be decreased with the action of microorganisms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work we report on the use of the Thermal Lens method to verify the evolution of the thermal diffusivity of sunflower and soybean vegetable oils utilized in preparation of twenty five snacks portions. Our results show that the thermal diffusivity for sunflower oil does not change between 1 and 25 portions of fried snacks. By another hand, the soybean thermal diffusivity exhibits a little decrease for higher portion of fried snacks, indicating that for this oil the triglyceride level is reduced as a degradation process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fourier Transform Infrared Photoacoustic Spectroscopy was used to determine the mid-infrared vibrational modes of biodiesel and vegetable oils. Our results indicate that this method can contribute significantly to the biodiesel wash process during the sample preparation. Besides, by analyzing the spectra of vegetable oils used to fry snacks we could to monitor the degradation in function of the fried time.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)