951 resultados para vector auto-regressive model
Resumo:
Neste estudo são analisados, através de técnicas de dados em painel, os fatores determinantes dos níveis de ativos líquidos de empresas abertas do Brasil, Argentina, Chile, México e Peru no período de 1995 a 2009. O índice utilizado nas modelagens é denominado de ativo líquido (ou simplesmente caixa), o qual inclui os recursos disponíveis em caixa e as aplicações financeiras de curto prazo, divididos pelo total de ativos da firma. É possível identificar uma tendência crescente de acúmulo de ativos líquidos como proporção do total de ativos ao longo dos anos em praticamente todos os países. São encontradas evidências de que empresas com maiores oportunidades de crescimento, maior tamanho (medido pelo total de ativos), maior nível de pagamento de dividendos e maior nível de lucratividade, acumulam mais caixa na maior parte dos países analisados. Da mesma forma, empresas com maiores níveis de investimento em ativo imobilizado, maior geração de caixa, maior volatilidade do fluxo de caixa, maior alavancagem e maior nível de capital de giro, apresentam menor nível de acúmulo de ativos líquidos. São identificadas semelhanças de fatores determinantes de liquidez em relação a estudos empíricos com empresas de países desenvolvidos, bem como diferenças devido a fenômenos particulares de países emergentes, como por exemplo elevadas taxas de juros internas, diferentes graus de acessibilidade ao mercado de crédito internacional e a linhas de crédito de agências de fomento, equity kicking, entre outros. Em teste para a base de dados das maiores firmas do Brasil, é identificada a presença de níveis-alvo de caixa através de modelo auto-regressivo de primeira ordem (AR1). Variáveis presentes em estudos mais recentes com empresas de países desenvolvidos como aquisições, abertura recente de capital e nível de governança corporativa também são testadas para a base de dados do Brasil.
Resumo:
This work assesses the forecasts of three nonlinear methods | Markov Switching Autoregressive Model, Logistic Smooth Transition Auto-regressive Model, and Auto-metrics with Dummy Saturation | for the Brazilian monthly industrial production and tests if they are more accurate than those of naive predictors such as the autoregressive model of order p and the double di erencing device. The results show that the step dummy saturation and the logistic smooth transition autoregressive can be superior to the double di erencing device, but the linear autoregressive model is more accurate than all the other methods analyzed.
Resumo:
Este trabalho apresenta uma modelagem paramétrica (auto-regressiva) linear aplicável a estudos de propagação de televisão digital e telefonia celular para cidades densamente arborizadas. A modelagem proposta apresenta um forte embasamento estatístico e depende apenas de dados provenientes de medição, no caso dados relativos a potência recebida e o valor de PSNR (Peak Signal-to-Noise Ratio). Um algoritmo genético é utilizado no cálculo dos parâmetros de ajuste do modelo a um conjunto de dados. O trabalho foi realizado na faixa de televisão digital e foram analisadas duas variáveis: a potência recebida do sinal e o valor de PSNR. Foram executadas campanhas de medição na cidade de Belém. Nestas medições foram coletados dados de potência e gravados vídeos da programação diária de uma emissora de televisão. Os resultados podem ser aplicados no planejamento de serviços de telecomunicações.
Resumo:
Bit performance prediction has been a challenging problem for the petroleum industry. It is essential in cost reduction associated with well planning and drilling performance prediction, especially when rigs leasing rates tend to follow the projects-demand and barrel-price rises. A methodology to model and predict one of the drilling bit performance evaluator, the Rate of Penetration (ROP), is presented herein. As the parameters affecting the ROP are complex and their relationship not easily modeled, the application of a Neural Network is suggested. In the present work, a dynamic neural network, based on the Auto-Regressive with Extra Input Signals model, or ARX model, is used to approach the ROP modeling problem. The network was applied to a real oil offshore field data set, consisted of information from seven wells drilled with an equal-diameter bit.
Resumo:
Motivated by rising drilling operation costs, the oil industry has shown a trend toward real-time measurements and control. In this scenario, drilling control becomes a challenging problem for the industry, especially due to the difficulty associated with parameters modeling. One of the drillbit performance evaluators, the Rate Of Penetration (ROP), has been used as a drilling control parameter. However, relationships between operational variables affecting the ROP are complex and not easily modeled. This work presents a neuro-genetic adaptive controller to treat this problem. It is based on an auto-regressive with extra input signals, or ARX model and on a Genetic Algorithm (GA) to control the ROP. © [2006] IEEE.
Resumo:
Motivated by rising drilling operation costs, the oil industry has shown a trend towards real-time measurements and control. In this scenario, drilling control becomes a challenging problem for the industry, especially due to the difficulty associated to parameters modeling. One of the drill-bit performance evaluators, the Rate of Penetration (ROP), has been used in the literature as a drilling control parameter. However, the relationships between the operational variables affecting the ROP are complex and not easily modeled. This work presents a neuro-genetic adaptive controller to treat this problem. It is based on the Auto-Regressive with Extra Input Signals model, or ARX model, to accomplish the system identification and on a Genetic Algorithm (GA) to provide a robust control for the ROP. Results of simulations run over a real offshore oil field data, consisted of seven wells drilled with equal diameter bits, are provided. © 2006 IEEE.
Resumo:
Objective: Biomedical events extraction concerns about events describing changes on the state of bio-molecules from literature. Comparing to the protein-protein interactions (PPIs) extraction task which often only involves the extraction of binary relations between two proteins, biomedical events extraction is much harder since it needs to deal with complex events consisting of embedded or hierarchical relations among proteins, events, and their textual triggers. In this paper, we propose an information extraction system based on the hidden vector state (HVS) model, called HVS-BioEvent, for biomedical events extraction, and investigate its capability in extracting complex events. Methods and material: HVS has been previously employed for extracting PPIs. In HVS-BioEvent, we propose an automated way to generate abstract annotations for HVS training and further propose novel machine learning approaches for event trigger words identification, and for biomedical events extraction from the HVS parse results. Results: Our proposed system achieves an F-score of 49.57% on the corpus used in the BioNLP'09 shared task, which is only 2.38% lower than the best performing system by UTurku in the BioNLP'09 shared task. Nevertheless, HVS-BioEvent outperforms UTurku's system on complex events extraction with 36.57% vs. 30.52% being achieved for extracting regulation events, and 40.61% vs. 38.99% for negative regulation events. Conclusions: The results suggest that the HVS model with the hierarchical hidden state structure is indeed more suitable for complex event extraction since it could naturally model embedded structural context in sentences.
Resumo:
A major challenge in text mining for biomedicine is automatically extracting protein-protein interactions from the vast amount of biomedical literature. We have constructed an information extraction system based on the Hidden Vector State (HVS) model for protein-protein interactions. The HVS model can be trained using only lightly annotated data whilst simultaneously retaining sufficient ability to capture the hierarchical structure. When applied in extracting protein-protein interactions, we found that it performed better than other established statistical methods and achieved 61.5% in F-score with balanced recall and precision values. Moreover, the statistical nature of the pure data-driven HVS model makes it intrinsically robust and it can be easily adapted to other domains.
Resumo:
In this paper, we discuss how discriminative training can be applied to the hidden vector state (HVS) model in different task domains. The HVS model is a discrete hidden Markov model (HMM) in which each HMM state represents the state of a push-down automaton with a finite stack size. In previous applications, maximum-likelihood estimation (MLE) is used to derive the parameters of the HVS model. However, MLE makes a number of assumptions and unfortunately some of these assumptions do not hold. Discriminative training, without making such assumptions, can improve the performance of the HVS model by discriminating the correct hypothesis from the competing hypotheses. Experiments have been conducted in two domains: the travel domain for the semantic parsing task using the DARPA Communicator data and the Air Travel Information Services (ATIS) data and the bioinformatics domain for the information extraction task using the GENIA corpus. The results demonstrate modest improvements of the performance of the HVS model using discriminative training. In the travel domain, discriminative training of the HVS model gives a relative error reduction rate of 31 percent in F-measure when compared with MLE on the DARPA Communicator data and 9 percent on the ATIS data. In the bioinformatics domain, a relative error reduction rate of 4 percent in F-measure is achieved on the GENIA corpus.
Resumo:
This paper proposes a novel framework of incorporating protein-protein interactions (PPI) ontology knowledge into PPI extraction from biomedical literature in order to address the emerging challenges of deep natural language understanding. It is built upon the existing work on relation extraction using the Hidden Vector State (HVS) model. The HVS model belongs to the category of statistical learning methods. It can be trained directly from un-annotated data in a constrained way whilst at the same time being able to capture the underlying named entity relationships. However, it is difficult to incorporate background knowledge or non-local information into the HVS model. This paper proposes to represent the HVS model as a conditionally trained undirected graphical model in which non-local features derived from PPI ontology through inference would be easily incorporated. The seamless fusion of ontology inference with statistical learning produces a new paradigm to information extraction.
Resumo:
This dissertation investigates, based on the Post-Keynesian theory and on its concept of monetary economy of production, the exchange rate behavior of the Brazilian Real in the presence of Brazilian Central Bank's interventions by means of the so-called swap transactions over 2002-2015. Initially, the work analyzes the essential properties of an open monetary economy of production and, thereafter, it presents the basic propositions of the Post-Keynesian view on the exchange rate determination, highlighting the properties of foreign exchange markets and the peculiarities of the Brazilian position into the international monetary and financial system. The research, thereby, accounts for the various segments of the Brazilian foreign exchange market. To accomplish its purpose, we first do a literature review of the Post-Keynesian literature about the topic. Then, we undertake empirical exams of the exchange rate determination using two statistical methods. On the one hand, to measure the volatility of exchange rate, we estimate Auto-regressive Conditional Heteroscedastic (ARCH) and Generalized Auto-regressive Conditional Heteroscedastic (GARCH) models. On the other hand, to measure the variance of the exchange rate in relation to real, financial variables, and the swaps, we estimate a Vector Auto-regression (VAR) model. Both experiments are performed for the nominal and real effective exchange rates. The results show that the swaps respond to exchange rate movements, trying to offset its volatility. This reveals that the exchange rate is, at least in a certain magnitude, sensitive to swaps transactions conducted by the Central Bank. In addition, another empirical result is that the real effective exchange rate responds more to the swaps auctions than the nominal rate.
Resumo:
Este artigo discute um modelo de previsão combinada para a realização de prognósticos climáticos na escala sazonal. Nele, previsões pontuais de modelos estocásticos são agregadas para obter as melhores projeções no tempo. Utilizam-se modelos estocásticos autoregressivos integrados a médias móveis, de suavização exponencial e previsões por análise de correlações canônicas. O controle de qualidade das previsões é feito através da análise dos resíduos e da avaliação do percentual de redução da variância não-explicada da modelagem combinada em relação às previsões dos modelos individuais. Exemplos da aplicação desses conceitos em modelos desenvolvidos no Instituto Nacional de Meteorologia (INMET) mostram bons resultados e ilustram que as previsões do modelo combinado, superam na maior parte dos casos a de cada modelo componente, quando comparadas aos dados observados.
Resumo:
The objective of the study was to describe seasonality of hospitalizations for heart failure in tropical climate as it has been described in cold climates. Seasonal Auto-regressive Integrated Moving-Average model was applied to time-series data of heart failure hospitalizations between 1996 and 2004 in Niteroi (Southeastern Brazil), collected from the Brazilian National Health Service Database. The standard seasonal variation was obtained by means of moving-average filtering and averaging data. The lowest and the highest annual hospital admissions were 507 (1997) and 849 (2002), respectively; the lowest and the highest monthly rates were 419 (December) and 681 (October), respectively. Peak admission rates were seen during the fall and winter. Although weak, the seasonality observed indicates that slight variations result in increased hospitalizations for heart failure.
Resumo:
Signal Processing, Vol. 86, nº 10
Resumo:
Wind speed forecasting has been becoming an important field of research to support the electricity industry mainly due to the increasing use of distributed energy sources, largely based on renewable sources. This type of electricity generation is highly dependent on the weather conditions variability, particularly the variability of the wind speed. Therefore, accurate wind power forecasting models are required to the operation and planning of wind plants and power systems. A Support Vector Machines (SVM) model for short-term wind speed is proposed and its performance is evaluated and compared with several artificial neural network (ANN) based approaches. A case study based on a real database regarding 3 years for predicting wind speed at 5 minutes intervals is presented.