928 resultados para vat dyes
Resumo:
Environmental pollution is one of the major and most important problems of the modern world. In order to fulfill the needs and demands of the overgrowing human population, developments in agriculture, medicine, energy sources, and all chemical industries are necessary (Ali 2010). Over the last century, the increased industrialization and continued population growth led to an augmented production of environmental pollutants that are released into air, water, and soil, with significant impact in the degradation of various ecosystems (Ali 2010, Khan et al. 2013).(...)
Resumo:
Raman spectroscopy has been applied to characterize fiber dyes and determine the discriminating ability of the method. Black, blue, and red acrylic, cotton, and wool samples were analyzed. Four excitation sources were used to obtain complementary responses in the case of fluorescent samples. Fibers that did not provide informative spectra using a given laser were usually detected using another wavelength. For any colored acrylic, the 633-nm laser did not provide Raman information. The 514-nm laser provided the highest discrimination for blue and black cotton, but half of the blue cottons produced noninformative spectra. The 830-nm laser exhibited the highest discrimination for red cotton. Both visible lasers provided the highest discrimination for black and blue wool, and NIR lasers produced remarkable separation for red and black wool. This study shows that the discriminating ability of Raman spectroscopy depends on the fiber type, color, and the laser wavelength.
Resumo:
OBJECTIVE: A new tool to quantify visceral adipose tissue (VAT) over the android region of a total body dual-energy x-ray absorptiometry (DXA) scan has recently been reported. The measurement, CoreScan, is currently available on Lunar iDXA densitometers. The purpose of the study was to determine the precision of the CoreScan VAT measurement, which is critical for understanding the utility of this measure in longitudinal trials. DESIGN AND METHODS: VAT precision was characterized in both an anthropomorphic imaging phantom (measured on 10 Lunar iDXA systems) and a clinical population consisting of obese women (n = 32). RESULTS: The intrascanner precision for the VAT phantom across 9 quantities of VAT mass (0-1,800 g) ranged from 28.4 to 38.0 g. The interscanner precision ranged from 24.7 to 38.4 g. There was no statistical dependence on the quantity of VAT for either the inter- or intrascanner precision result (p = 0.670). Combining inter- and intrascanner precision yielded a total phantom precision estimate of 47.6 g for VAT mass, which corresponds to a 4.8% coefficient of variance (CV) for a 1 kg VAT mass. Our clinical population, who completed replicate total body scans with repositioning between scans, showed a precision of 56.8 g on an average VAT mass of 1110.4 g. This corresponds to a 5.1% CV. Hence, the in vivo precision result was similar to the phantom precision result. CONCLUSIONS: The study suggests that CoreScan has a relatively low precision error in both phantoms and obese women and therefore may be a useful addition to clinical trials where interventions are targeted towards changes in visceral adiposity.
Resumo:
Cysteine thiol modifications are increasingly recognized to occur under both physiological and pathophysiological conditions, making their accurate detection, identification and quantification of growing importance. However, saturation labeling of thiols with fluorescent dyes results in poor protein recuperation and therefore requires the use of large quantities of starting material. This is especially important in sequential dye-labeling steps when applied for an identification of cysteine modifications. First, we studied the effects of different detergents during labeling procedure, i.e. Tween 20, Triton X-100 and CHAPS, on protein yield and composition. Tween 20 and Triton X-100 resulted in yields of around 50% labeled proteins compared to only 10% with PBS alone and a most diversified 2-DE protein pattern. Secondly, Tween 20 was used for serial protein labeling with maleimid fluorophores, first to conjugate to accessible thiols and after a reduction to label with another fluorophore previously masked di-sulphide and/or oxidized proteins in frontal cortex autopsy tissue of a subject with mild Alzheimer's disease. Two-DE DIGE revealed a complex protein pattern of readily labeled thiols and di-sulphide and/or oxidized proteins. Seventeen proteins were identified by MALDI-TOF and by peptide fingerprints. Several proteins were oxidized and involved in Alzheimer's disease. However methionine oxidation was prevalent. Infrared DIGE may provide an additional tool for an identification of oxidation susceptible proteins.
Resumo:
The determination of dyes present in illicit pills is shown to be useful and easy-to-get information in strategic and tactical drug intelligence. An analytical strategy including solid-phase extraction (SPE) thin-layer chromatography (TLC) and capillary zone electrophoresis equipped with a diode array detector (CZE-DAD) was developed to identify and quantify 14 hydrosoluble, acidic, synthetic food dyes allowed in the European Community. Indeed, these may be the most susceptible dyes to be found in illicit pills through their availability and easiness of use. The results show (1) that this analytical method is well adapted to small samples such as illicit pills, (2) that most dyes actually found belong to hydrosoluble, acidic, synthetic food dyes allowed in the European Community, and (3) that this evidence turns out to be important in drug intelligence and may be assessed into a Bayesian framework.
Resumo:
A collaborative study on Raman spectroscopy and microspectrophotometry (MSP) was carried out by members of the ENFSI (European Network of Forensic Science Institutes) European Fibres Group (EFG) on different dyed cotton fabrics. The detection limits of the two methods were tested on two cotton sets with a dye concentration ranging from 0.5 to 0.005% (w/w). This survey shows that it is possible to detect the presence of dye in fibres with concentrations below that detectable by the traditional methods of light microscopy and microspectrophotometry (MSP). The MSP detection limit for the dyes used in this study was found to be a concentration of 0.5% (w/w). At this concentration, the fibres appear colourless with light microscopy. Raman spectroscopy clearly shows a higher potential to detect concentrations of dyes as low as 0.05% for the yellow dye RY145 and 0.005% for the blue dye RB221. This detection limit was found to depend both on the chemical composition of the dye itself and on the analytical conditions, particularly the laser wavelength. Furthermore, analysis of binary mixtures of dyes showed that while the minor dye was detected at 1.5% (w/w) (30% of the total dye concentration) using microspectrophotometry, it was detected at a level as low as 0.05% (w/w) (10% of the total dye concentration) using Raman spectroscopy. This work also highlights the importance of a flexible Raman instrument equipped with several lasers at different wavelengths for the analysis of dyed fibres. The operator and the set up of the analytical conditions are also of prime importance in order to obtain high quality spectra. Changing the laser wavelength is important to detect different dyes in a mixture.
Resumo:
The present study was designed to investigate the efficacy of the fluorescent dyes Fast Blue (FB), Fluoro-Gold (FG), and Diamidino Yellow (DY) for retrograde tracing of lumbar dorsal root ganglia after their subcutaneous injection into different hindlimb digits. Injection of equal volumes (0.5 mu l) of 5% FB or 2% FG resulted in similar mean numbers of sensory neurones labelled by each tracer. Injection of equal volumes (0.5 mu l) of FB or FG in a single digit followed 10 days later by a second injection of the same volume of 5% DY into the same digit resulted in similar mean numbers of labelled sensory neurones for each of the three tracers. Furthermore, on average, 75% of all the FB-labelled cells and 74% of all FC-labelled cells also contained DY. Repeating the same experiment with an increased volume of DY (1.5 mu l) resulted in an increase in the mean number of double-labelled profiles to 82 and 84% for FB and FG, respectively. The results show that FB, FG and DY label similar numbers of cutaneous afferents and that a high level of double labelling may be obtained after sequential injections in digits. These properties make them suitable candidates in investigations where a combination of tracers with similar labelling efficacies is needed.
Resumo:
Throughout history indigo was derived from various plants for example Dyer’s Woad (Isatis tinctoria L.) in Europe. In the 19th century were the synthetic dyes developed and nowadays indigo is mainly synthesized from by-products of fossil fuels. Indigo is a so-called vat dye, which means that it needs to be reduced to its water soluble leucoform before dyeing. Nowadays, most of the industrial reduction is performed chemically by sodium dithionite. However, this is considered environmentally unfavourable because of waste waters contaminating degradation products. Therefore there has been interest to find new possibilities to reduce indigo. Possible alternatives for the application of dithionite as the reducing agent are biologically induced reduction and electrochemical reduction. Glucose and other reducing sugars have recently been suggested as possible environmentally friendly alternatives as reducing agents for sulphur dyes and there have also been interest in using glucose to reduce indigo. In spite of the development of several types of processes, very little is known about the mechanism and kinetics associated with the reduction of indigo. This study aims at investigating the reduction and electrochemical analysis methods of indigo and give insight on the reduction mechanism of indigo. Anthraquinone as well as it’s derivative 1,8-dihydroxyanthraquinone were discovered to act as catalysts for the glucose induced reduction of indigo. Anthraquinone introduces a strong catalytic effect which is explained by invoking a molecular “wedge effect” during co-intercalation of Na+ and anthraquinone into the layered indigo crystal. The study includes also research on the extraction of plant-derived indigo from woad and the examination of the effect of this method to the yield and purity of indigo. The purity has been conventionally studied spectrophotometrically and a new hydrodynamic electrode system is introduced in this study. A vibrating probe is used in following electrochemically the leuco-indigo formation with glucose as a reducing agent.
Resumo:
This work investigates the adsorption of Alizarin, Eriochrome Blue Black R and Fluorescein using chitosan, goethite and magnetite as adsorbents. For Alizarin, the best adsorbent is chitosan with a Langmuir parameter of 15.8 mmol dye/g adsorbent. For Eriochrome Blue Black R only 1.94 mmol dye/g chitosan is adsorbed. Langmuir parameters for the Alizarin adsorption on both iron oxides display one or two orders of magnitude lower than for chitosan and two orders of magnitude lower in the case of Eriochrome Blue Black R. Fluorescein does not adsorb in appreciable amounts on chitosan and it presents the lower affinity on the iron oxides.
Resumo:
Carotenoids are natural dyes synthesized by plants, algae and microorganisms. Application in many sectors can be found, as food dyeing and supplementation, pharmaceuticals, cosmetics and animal feed. Recent investigations have shown their ability to reduce the risks for many degenerative diseases like cancer, heart diseases, cataract and macular degeneration. An advantage of microbial carotenoids is the fact that the cultivation in controlled conditions is not dependent of climate, season or soil composition. In this review the advances in bio-production of carotenoids are presented, discussing the main factors that influence the microbial production of these dyes in different systems.
Resumo:
Four new extraction-free spectrophotometric methods have been established for the quantitation of famotidine (FMT). The methods are based on the formation of yellow ion-pair complexes between FMT and four sulphonphthalein dyes viz., bromothymol blue (method A), bromophenol blue (method B), bromocresol purple (method C) and bromocresol green (method D) in dioxane or acetone medium. The experimental variables such as reagent concentration, solvent medium and reaction time have been carefully optimized to achieve the highest sensitivity. The proposed methods were applied successfully to the determination of famotidine in tablets with good accuracy and precision and without interferences from common excipients. The results obtained by the proposed methods were compared favorably with those of the reference method.