843 resultados para urinary tract cancer


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Urinary tract infection (UTI) is among the most common infectious diseases of humans and is the most common nosocomial infection in the developed world. They cause significant morbidity and mortality, with approximately 150 million cases globally per year. It is estimated that 40-50% of women and 5% of men will develop a UTI in their lifetime, and UTI accounts for more than 1 million hospitalizations and $1.6 billion in medical expenses each year in the USA. Uropathogenic E. coli (UPEC) is the primary cause of UTI. This review presents an overview of the primary virulence factors of UPEC, the major host responses to infection of the urinary tract, the emergence of specific multidrug resistant clones of UPEC, antibiotic treatment options for UPEC-mediated UTI and the current state of vaccine strategies as well as other novel anti-adhesive and prophylactic approaches to prevent UTI. New and emerging themes in UPEC research are also discussed in the context of future outlooks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A cohort of 161 underground miners who had been highly exposed to dinitrotoluene (DNT) in the copper-mining industry of the former German Democratic Republic was reinvestigated for signs of subclinical renal damage. The study included a screening of urinary proteins excreted by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), and quantitations of the specific urinary proteins α 1-microglobulin and glutathione-S-transferase α (GST α) as biomarkers for damage of the proximal tubule and glutathione-S-transferase π (GST π) for damage of the distal tubule. The exposures were categorized semiquantitatively (low, medium, high, and very high), according to the type and duration of professional contact with DNT. A straight dose-dependence of pathological protein excretion patterns with the semiquantitative ranking of DNT exposure was seen. Most of the previously reported cancer cases of the urinary tract, especially those in the higher exposed groups, were confined to pathological urinary protein excretion patterns. The damage from DNT was directed toward the tubular system. In many cases, the appearance of Tamm-Horsfall protein, a 105-kD protein marker, was noted. Data on the biomarkers α 1-microglobulin, GST α, and GST π consistently demonstrated a dose-dependent increase in tubular damage, which confirmed the results of screening by SDS-PAGE and clearly indicated a nephrotoxic effect of DNT under the given conditions of exposure. Within the cluster of cancer patients observed among the DNT-exposed workers, only in exceptional cases were normal biomarker excretions found.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Urinary tract infections (UTIs) are among the most common infectious diseases of humans, with Escherichia coli responsible for >80% of all cases. One extreme of UTI is asymptomatic bacteriuria (ABU), which occurs as an asymptomatic carrier state that resembles commensalism. To understand the evolution and molecular mechanisms that underpin ABU, the genome of the ABU E. coli strain VR50 was sequenced. Analysis of the complete genome indicated that it most resembles E. coli K-12, with the addition of a 94-kb genomic island (GI-VR50-pheV), eight prophages, and multiple plasmids. GI-VR50-pheV has a mosaic structure and contains genes encoding a number of UTI-associated virulence factors, namely, Afa (afimbrial adhesin), two autotransporter proteins (Ag43 and Sat), and aerobactin. We demonstrated that the presence of this island in VR50 confers its ability to colonize the murine bladder, as a VR50 mutant with GI-VR50-pheV deleted was attenuated in a mouse model of UTI in vivo. We established that Afa is the island-encoded factor responsible for this phenotype using two independent deletion (Afa operon and AfaE adhesin) mutants. E. coli VR50afa and VR50afaE displayed significantly decreased ability to adhere to human bladder epithelial cells. In the mouse model of UTI, VR50afa and VR50afaE displayed reduced bladder colonization compared to wild-type VR50, similar to the colonization level of the GI-VR50-pheV mutant. Our study suggests that E. coli VR50 is a commensal-like strain that has acquired fitness factors that facilitate colonization of the human bladder.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Urinary tract infections (UTIs) are among the most common bacterial infections in humans. Murine models of human UTI are vital experimental tools that have helped to elucidate UTI pathogenesis and advance knowledge of potential treatment and infection prevention strategies. Fundamentally, several variables are inherent in different murine models, and understanding the limitations of these variables provides an opportunity to understand how models may be best applied to research aimed at mimicking human disease. In this review, we discuss variables inherent in murine UTI model studies and how these affect model usage, data analysis and data interpretation. We examine recent studies that have elucidated UTI host–pathogen interactions from the perspective of gene expression, and review new studies of biofilm and UTI preventative approaches. We also consider potential standards for variables inherent in murine UTI models and discuss how these might expand the utility of models for mimicking human disease and uncovering new aspects of pathogenesis

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background CD14, a coreceptor for several pattern recognition receptors and a widely used monocyte/macrophage marker, plays a key role in host responses to gram-negative bacteria. Despite the central role of CD14 in the inflammatory response to lipopolysaccharide and other microbial products and in the dissemination of bacteria in some infections, the signaling networks controlled by CD14 during urinary tract infection (UTI) are unknown. Methods We used uropathogenic Escherichia coli (UPEC) infection of wild-type (WT) C57BL/6 and Cd14−/− mice and RNA sequencing to define the CD14-dependent transcriptional signature and the role of CD14 in host defense against UTI in the bladder. Results UPEC induced the upregulation of Cd14 and the monocyte/macrophage-related genes Emr1/F4/80 and Csf1r/c-fms, which was associated with lower UPEC burdens in WT mice, compared with Cd14−/− mice. Exacerbation of infection in Cd14−/− mice was associated with the absence of a 491-gene transcriptional signature in the bladder that encompassed multiple host networks not previously associated with this receptor. CD14-dependent pathways included immune cell trafficking, differential cytokine production in macrophages, and interleukin 17 signaling. Depletion of monocytes/macrophages in the bladder by administration of liposomal clodronate led to higher UPEC burdens. Conclusions This study identifies new host protective and signaling roles for CD14 in the bladder during UPEC UTI.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The most common causes of urinary tract infections (UTIs) are Gram-negative pathogens such as Escherichia coli; however, Gram-positive organisms including Streptococcus agalactiae, or group B streptococcus (GBS), also cause UTI. In GBS infection, UTI progresses to cystitis once the bacteria colonize bladder, but the host responses triggered in the bladder immediately following infection are largely unknown. Here, we used genome-wide expression profiling to map the bladder transcriptome of GBS UTI in mice infected transurethrally with uropathogenic GBS that was cultured from a 35 year-old women with cystitis. RNA from bladders was applied to Affymetrix Gene-1.0ST microarrays; qRT-PCR was used to analyze selected gene responses identified in array datasets. A surprisingly small significant gene list of 172 genes was identified at 24h; this compared to 2507 genes identified in a side-by-side comparison with uropathogenic E. coli (UPEC). No genes exhibited significantly altered expression at 2h in GBS-infected mice according to arrays despite high bladder bacterial loads at this early time point. The absence of a marked early host response to GBS juxtaposed with broad-based bladder responses activated by UPEC at 2h. Bioinformatics analyses including integrative systems-level network mapping revealed multiple activated biological pathways in the GBS cystitis transcriptome that regulate leukocyte activation, inflammation, apoptosis, and cytokine-chemokine biosynthesis. These findings define a novel, minimalistic type of bladder host response triggered by GBS UTI, which comprises collective antimicrobial pathways that differ dramatically from those activated by UPEC. Overall, this study emphasizes the unique nature of bladder immune activation mechanisms triggered by distinct uropathogens.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Group B streptococcus (GBS), also known as Streptococcus agalactiae is a Gram-positive, β-hemolytic, chain-forming bacterium and a commensal within the genital tract flora in approximately 25% of healthy adult women (Campbell et al., 2000). The organism is a leading cause of serious infection in newborns, pregnant women, and older persons with chronic medical illness (Baker et al., Edwards&Baker, 2005). In neonates GBS infection most commonly causes pneumonia, meningitis, and sepsis. In addition to maternal cervicovaginal colonization and neonatal infection that can result from vertical transmission of GBS from mothers to their infants, the bacterium can also cause urinary tract infection (UTI). The spectrum of GBS UTI includes asymptomatic bacteriuria (ABU), cystitis, pyelonephritis, urethritis, and urosepsis (Bronsema et al., 1993, Edwards&Baker, 2005, Farley et al., 1993, Lefevre et al., 1991, McKenna et al., 2003, Munoz et al., 1992, Ulett et al., 2009). GBS ABU is particularly common among pregnant women, although those most at risk for cystitis due to GBS appear to be elderly individuals (Edwards&Baker, 2005, Falagas et al., 2006, Muller et al., 2006). In addition to acute and asymptomatic UTI other invasive diseases caused by GBS infection include skin infections, bacteraemia, pneumonia, arthritis, and endocarditis (Liston et al., 1979, Patil & Martin, 2010, Tissi et al., 1997, Trivalle et al., 1998). Thus, GBS is considered unique in terms of its ability to cause a spectrum of diseases in newborns and adult humans and its ability to colonize the genital tract of healthy women in a commensal-type manner...

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Extraintestinal pathogenic Escherichia coli (ExPEC) represent a diverse group of strains of E. coli, which infect extraintestinal sites, such as the urinary tract, the bloodstream, the meninges, the peritoneal cavity, and the lungs. Urinary tract infections (UTIs) caused by uropathogenic E. coli (UPEC), the major subgroup of ExPEC, are among the most prevalent microbial diseases world wide and a substantial burden for public health care systems. UTIs are responsible for serious morbidity and mortality in the elderly, in young children, and in immune-compromised and hospitalized patients. ExPEC strains are different, both from genetic and clinical perspectives, from commensal E. coli strains belonging to the normal intestinal flora and from intestinal pathogenic E. coli strains causing diarrhea. ExPEC strains are characterized by a broad range of alternate virulence factors, such as adhesins, toxins, and iron accumulation systems. Unlike diarrheagenic E. coli, whose distinctive virulence determinants evoke characteristic diarrheagenic symptoms and signs, ExPEC strains are exceedingly heterogeneous and are known to possess no specific virulence factors or a set of factors, which are obligatory for the infection of a certain extraintestinal site (e. g. the urinary tract). The ExPEC genomes are highly diverse mosaic structures in permanent flux. These strains have obtained a significant amount of DNA (predictably up to 25% of the genomes) through acquisition of foreign DNA from diverse related or non-related donor species by lateral transfer of mobile genetic elements, including pathogenicity islands (PAIs), plasmids, phages, transposons, and insertion elements. The ability of ExPEC strains to cause disease is mainly derived from this horizontally acquired gene pool; the extragenous DNA facilitates rapid adaptation of the pathogen to changing conditions and hence the extent of the spectrum of sites that can be infected. However, neither the amount of unique DNA in different ExPEC strains (or UPEC strains) nor the mechanisms lying behind the observed genomic mobility are known. Due to this extreme heterogeneity of the UPEC and ExPEC populations in general, the routine surveillance of ExPEC is exceedingly difficult. In this project, we presented a novel virulence gene algorithm (VGA) for the estimation of the extraintestinal virulence potential (VP, pathogenicity risk) of clinically relevant ExPECs and fecal E. coli isolates. The VGA was based on a DNA microarray specific for the ExPEC phenotype (ExPEC pathoarray). This array contained 77 DNA probes homologous with known (e.g. adhesion factors, iron accumulation systems, and toxins) and putative (e.g. genes predictably involved in adhesion, iron uptake, or in metabolic functions) ExPEC virulence determinants. In total, 25 of DNA probes homologous with known virulence factors and 36 of DNA probes representing putative extraintestinal virulence determinants were found at significantly higher frequency in virulent ExPEC isolates than in commensal E. coli strains. We showed that the ExPEC pathoarray and the VGA could be readily used for the differentiation of highly virulent ExPECs both from less virulent ExPEC clones and from commensal E. coli strains as well. Implementing the VGA in a group of unknown ExPECs (n=53) and fecal E. coli isolates (n=37), 83% of strains were correctly identified as extraintestinal virulent or commensal E. coli. Conversely, 15% of clinical ExPECs and 19% of fecal E. coli strains failed to raster into their respective pathogenic and non-pathogenic groups. Clinical data and virulence gene profiles of these strains warranted the estimated VPs; UPEC strains with atypically low risk-ratios were largely isolated from patients with certain medical history, including diabetes mellitus or catheterization, or from elderly patients. In addition, fecal E. coli strains with VPs characteristic for ExPEC were shown to represent the diagnostically important fraction of resident strains of the gut flora with a high potential of causing extraintestinal infections. Interestingly, a large fraction of DNA probes associated with the ExPEC phenotype corresponded to novel DNA sequences without any known function in UTIs and thus represented new genetic markers for the extraintestinal virulence. These DNA probes included unknown DNA sequences originating from the genomic subtractions of four clinical ExPEC isolates as well as from five novel cosmid sequences identified in the UPEC strains HE300 and JS299. The characterized cosmid sequences (pJS332, pJS448, pJS666, pJS700, and pJS706) revealed complex modular DNA structures with known and unknown DNA fragments arranged in a puzzle-like manner and integrated into the common E. coli genomic backbone. Furthermore, cosmid pJS332 of the UPEC strain HE300, which carried a chromosomal virulence gene cluster (iroBCDEN) encoding the salmochelin siderophore system, was shown to be part of a transmissible plasmid of Salmonella enterica. Taken together, the results of this project pointed towards the assumptions that first, (i) homologous recombination, even within coding genes, contributes to the observed mosaicism of ExPEC genomes and secondly, (ii) besides en block transfer of large DNA regions (e.g. chromosomal PAIs) also rearrangements of small DNA modules provide a means of genomic plasticity. The data presented in this project supplemented previous whole genome sequencing projects of E. coli and indicated that each E. coli genome displays a unique assemblage of individual mosaic structures, which enable these strains to successfully colonize and infect different anatomical sites.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Scientists interested in the smooth muscles of the urinary tract, and their control, have recently been studying cells in the interstitium of tissues that express the c-kit antigen (Kit(+) cells). These cells have morphologic features that are reminiscent of the well-described pacemaker cells in the gut, the interstitial cells of Cajal (ICC). The spontaneous contractile behavior of muscles in the urinary tract varies widely, and it is clear that urinary tract Kit(+) interstitial cells cannot be playing an identical role to that played by the ICC in the gut. Nevertheless, there is increasing evidence that they do play a role in modulating the contractile behavior of adjacent smooth muscle, and might also be involved in mediating neural control. This review outlines the properties of ICC in the gut, and gives an account of the discovery of cells in the interstitium of the main components of the urinary tract. The physiologic properties of such cells and the functional implications of their presence are discussed, with particular reference to the bladder. In this organ, Kit(+) cells are found under the lamina propria, where they might interact with the urothelium and with sensory nerves, and also between and within the smooth-muscle bundles. Confocal microscopy and calcium imaging are being used to assess the physiology of ICC and their interactions with smooth muscles. Differences in the numbers of ICC are seen in smooth muscle specimens obtained from patients with various pathologies; in particular, bladder overactivity is associated with increased numbers of these cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cho SH, Naber K, Hacker J, Ziebuhr W. Institut für Molekulare Infektionsbiologie, Röntgenring 11, D-97070 Würzburg, Germany. Biofilm production in Staphylococcus epidermidis is an important virulence factor that is mediated by the expression of the icaADBC operon. In this study 41 S. epidermidis isolates obtained from catheter-related urinary tract infections were analyzed for the presence of the icaADBC operon and biofilm formation. Eighteen of 41 isolates (44%) were shown to carry ica-specific DNA, but only 11 isolates (27%) produced biofilms spontaneously under normal growth conditions. Upon induction by external stress or antibiotics, biofilm formation could be stimulated in five of seven ica-positive, biofilm-negative isolates, indicating that the icaADBC expression was down-regulated in these strains. Genetic analyses of the ica gene clusters of the remaining two ica-positive, biofilm-negative strains revealed a spontaneous ICAC::IS256 insertion in one strain. Insertion of the element caused a target site duplication of seven base pairs and a biofilm-negative phenotype. After repeated passages the insertion mutant was able to revert to a biofilm-forming phenotype which was due to the precise excision of IS256 from the icaC gene. The data show that icaC::IS256 integrations occur during S. epidermidis polymer-related infections and the results highlight the biological relevance of the IS256-mediated phase variation of biofilm production in S. epidermidis during an infection.