982 resultados para unknown-input functional observability


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents new developments in common functional observers for two systems. We improve an existing common functional observer scheme by reducing its order, and then investigate its existence conditions in terms of the original system matrices. These conditions have never been explored and they enable the users to know at the outset the class of systems for which the scheme is applicable. They also show that both observers can be designed independently of each other which significantly simplifies the design process. A numerical simulation verifies the findings.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper considers the design of a common linear functional observer for two linear time-invariant systems with unknown inputs. A structure for a common observer which only uses the available output information is proposed. Here, for the proposed structure, we show that the simultaneous functional observation problem of two plants is reduced to a problem of designing two observers: the first is a full-order unknown input observer of one of the two systems; the second observer is a common unknown input observer of a system comprises two-connected systems. In general, the existence conditions for the second observer are very difficult to satisfy. This paper thus concludes that it is indeed very difficult to find a common observer for two linear systems with unknown inputs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a solution to the problem of designing a common linear functional observer that can observe a partial set of the state vector of two linear systems with unknown inputs. A new structure of a decoupled linear functional observer is proposed for systems subject unknown disturbances, using only the available output information. Existence conditions as well as a design procedure are given for constructing the proposed observer. A numerical example is given to illustrate the effectiveness of the new observer structure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This brief addresses the problem of estimation of both the states and the unknown inputs of a class of systems that are subject to a time-varying delay in their state variables, to an unknown input, and also to an additive uncertain, nonlinear disturbance. Conditions are derived for the solvability of the design matrices of a reduced-order observer for state and input estimation, and for the stability of its dynamics. To improve computational efficiency, a delay-dependent asymptotic stability condition is then developed using the linear matrix inequality formulation. A design procedure is proposed and illustrated by a numerical example.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper reports a system decomposition that allows the construction of a minimum-order functional observer using a state observer design approach. The system decomposition translates the functional observer design problem to that of a state observer for a smaller decomposed subsystem. Functional observability indices are introduced, and a closed-form expression for the minimum order required for a functional observer is derived in terms of those functional observability indices. © 2014 Taylor & Francis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper investigates the problem of robust observer-based stabilization for a class of one-sided nonlinear discrete-time systems subjected to unknown inputs. We propose a simple simultaneous state and input estimator. A nonlinear controller is then proposed to compensate for the effects of unknown inputs and to ensure asymptotic stability in a closed loop. Several mathematical artifacts are used to deduce stability conditions expressed in terms of linear matrix inequalities. To show high performances of the proposed technique, a relevant example is provided with comparisons to recent results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Partial state estimation of dynamical systems provides significant advantages in practical applications. Likewise, pre-compensator design for multi variable systems invokes considerable increase in the order of the original system. Hence, applying functional observer to pre-compensated systems can result in lower computational costs and more practicability in some applications such as fault diagnosis and output feedback control of these systems. In this note, functional observer design is investigated for pre-compensated systems. A lower order pre-compensator is designed based on a H2 norm optimization that is designed as the solution of a set of linear matrix inequalities (LMIs). Next, a minimum order functional observer is designed for the pre-compensated system. An LTI model of an irreversible chemical reactor is used to demonstrate our design algorithm, and to highlight the benefits of the proposed schemes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The direct approach in designing functional observers was first presented in [1] for estimating a single function of the states of a Linear Time-Invariant (LTI) system. One of the benefits of the direct scheme is that it does not require solving the interconnected Sylvester equations that appear in the other observer design approaches. In the present paper, the direct approach is extended to reconstruct multiple functions of the states in such a way that the minimum possible order of the observer is achieved. The observer is designed so that an asymptotic functional observer can be obtained with arbitrary convergence rate. In the proposed methodology, it is not necessary that a reduced order observer exists for the desired functions to be estimated. To release this limitation, an algorithm is employed to find some auxiliary functions in the minimum required number to be appended to the desired functions. This method assumes that the system is functional observable. This assumption however is less restrictive than the observability and detectability conditions of the system. A numerical example and simulation results explain the efficacy and the benefits of the proposed algorithm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Seizures and interictal spikes in mesial temporal lobe epilepsy (MTLE) affect a network of brain regions rather than a single epileptic focus. Simultaneous electroencephalography and functional magnetic resonance imaging (EEG-fMRI) studies have demonstrated a functional network in which hemodynamic changes are time-locked to spikes. However, whether this reflects the propagation of neuronal activity from a focus, or conversely the activation of a network linked to spike generation remains unknown. The functional connectivity (FC) changes prior to spikes may provide information about the connectivity changes that lead to the generation of spikes. We used EEG-fMRI to investigate FC changes immediately prior to the appearance of interictal spikes on EEG in patients with MTLE. Methods/principal findings: Fifteen patients with MTLE underwent continuous EEG-fMRI during rest. Spikes were identified on EEG and three 10 s epochs were defined relative to spike onset: spike (0–10 s), pre-spike (−10 to 0 s), and rest (−20 to −10 s, with no previous spikes in the preceding 45s). Significant spike-related activation in the hippocampus ipsilateral to the seizure focus was found compared to the pre-spike and rest epochs. The peak voxel within the hippocampus ipsilateral to the seizure focus was used as a seed region for FC analysis in the three conditions. A significant change in FC patterns was observed before the appearance of electrographic spikes. Specifically, there was significant loss of coherence between both hippocampi during the pre-spike period compared to spike and rest states. Conclusion/significance: In keeping with previous findings of abnormal inter-hemispheric hippocampal connectivity in MTLE, our findings specifically link reduced connectivity to the period immediately before spikes. This brief decoupling is consistent with a deficit in mutual (inter-hemispheric) hippocampal inhibition that may predispose to spike generation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A scheme for the detection and isolation of actuator faults in linear systems is proposed. A bank of unknown input observers is constructed to generate residual signals which will deviate in characteristic ways in the presence of actuator faults. Residual signals are unaffected by the unknown inputs acting on the system and this decreases the false alarm and miss probabilities. The results are illustrated through a simulation study of actuator fault detection and isolation in a pilot plant doubleeffect evaporator.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Among the experimental methods commonly used to define the behaviour of a full scale system, dynamic tests are the most complete and efficient procedures. A dynamic test is an experimental process, which would define a set of characteristic parameters of the dynamic behaviour of the system, such as natural frequencies of the structure, mode shapes and the corresponding modal damping values associated. An assessment of these modal characteristics can be used both to verify the theoretical assumptions of the project, to monitor the performance of the structural system during its operational use. The thesis is structured in the following chapters: The first introductive chapter recalls some basic notions of dynamics of structure, focusing the discussion on the problem of systems with multiply degrees of freedom (MDOF), which can represent a generic real system under study, when it is excited with harmonic force or in free vibration. The second chapter is entirely centred on to the problem of dynamic identification process of a structure, if it is subjected to an experimental test in forced vibrations. It first describes the construction of FRF through classical FFT of the recorded signal. A different method, also in the frequency domain, is subsequently introduced; it allows accurately to compute the FRF using the geometric characteristics of the ellipse that represents the direct input-output comparison. The two methods are compared and then the attention is focused on some advantages of the proposed methodology. The third chapter focuses on the study of real structures when they are subjected to experimental test, where the force is not known, like in an ambient or impact test. In this analysis we decided to use the CWT, which allows a simultaneous investigation in the time and frequency domain of a generic signal x(t). The CWT is first introduced to process free oscillations, with excellent results both in terms of frequencies, dampings and vibration modes. The application in the case of ambient vibrations defines accurate modal parameters of the system, although on the damping some important observations should be made. The fourth chapter is still on the problem of post processing data acquired after a vibration test, but this time through the application of discrete wavelet transform (DWT). In the first part the results obtained by the DWT are compared with those obtained by the application of CWT. Particular attention is given to the use of DWT as a tool for filtering the recorded signal, in fact in case of ambient vibrations the signals are often affected by the presence of a significant level of noise. The fifth chapter focuses on another important aspect of the identification process: the model updating. In this chapter, starting from the modal parameters obtained from some environmental vibration tests, performed by the University of Porto in 2008 and the University of Sheffild on the Humber Bridge in England, a FE model of the bridge is defined, in order to define what type of model is able to capture more accurately the real dynamic behaviour of the bridge. The sixth chapter outlines the necessary conclusions of the presented research. They concern the application of a method in the frequency domain in order to evaluate the modal parameters of a structure and its advantages, the advantages in applying a procedure based on the use of wavelet transforms in the process of identification in tests with unknown input and finally the problem of 3D modeling of systems with many degrees of freedom and with different types of uncertainty.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The problem of designing linear functional observers for discrete time-delay systems with unknown-but-bounded disturbances in both the plant and the output is considered for the first time in this paper. A novel approach to design a minimum-order observer is proposed to guarantee that the observer error is ϵ-convergent, which means that the estimate converges robustly within an ϵ-bound of the true state. Conditions for the existence of this observer are first derived. Then, by utilising an extended Lyapunov-Krasovskii functional and the free-weighting matrix technique, a sufficient condition for ϵ-convergence of the observer error system is given. This condition is presented in terms of linear matrix inequalities with two parameters needed to be tuned, so that it can be efficiently solved by incorporating a two-dimensional search method into convex optimisation algorithms to obtain the smallest possible value for ϵ. Three numerical examples, including the well-known single-link flexible joint robotic system, are given to illustrate the feasibility and effectiveness of our results.