1000 resultados para unit T0403 of Yuxi Site


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A morphologically complex igneous basement was penetrated at Leg 125 Site 786 beneath approximately 100 m of Eocene-Pleistocene sediments at 31°52.45 'N, 141°13.59'E in a 3082-m water depth. The site is located on the forearc basement high (FBH) of the Izu-Bonin (Ogasawara) Arc. In the broadest terms, the sequence in Hole 786B consists of a basal sheeted dike complex, heavily mineralized in places, with overlying pillow lavas giving way to a complex and repeated sequence of interlayered volcanic breccias and lava flows with some thin sedimentary intervals. The sequence has been further cut by dikes or sills, particularly of high-Ca and intermediate-Ca boninite, and is locally strongly sheared by faulting. The whole basement has been covered with middle Eocene-early Pleistocene sediments. A monomict breccia forms the shallowest portion of Hole 786B and a polymict breccia having Mn-oxide-rich clast coatings and matrix forms the deepest part of Hole 786A (-100-160 mbsf). The basement is tectonized in some places, and a mineralized stockwork is present in the deepest part of Hole 786B. A wide variety of rock types form this basement, ranging from mafic to silicic in character and including high-, intermediate-, and low-Ca boninites, intermediate- and low-Ca bronzite andesites, andesite, dacite, and rhyolite groups. Intragroup and intergroup relationships are complicated in detail, and several different upper mantle source(s) probably were involved. A significant role for orthopyroxene-clinopyroxene-plagioclase fractionation is indicated in the mafic-intermediate groups, and the most probable complementary cumulates should be noritic gabbros. Many overall similarities but some subtle differences are noted between the igneous basement at Site 786 and the subaerial outcrops of the FBH to the south in the type boninite locality of Chichijima. Both suites were derived by hydrous melting of a relatively shallow, refractory (harzburgitic) upper mantle source. These Bonin forearc basement rocks are similar in many respects to those of Eocene-Oligocene age now forming the forearc of the Marianas at Leg 60 Site 458 and on Guam. In sharp distinction, the geochemistry of the Eocene-Pleistocene ash sequences overlying the Bonin FBH must have been derived from a very different upper mantle source, implying considerable across-strike differences in sub-arc mantle composition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Detection of climate response to orbital forcing during Cenozoic long-term global cooling is a key to understanding the behavior of Earth's icehouse climate. Sedimentary rhythm, which is a rhythmic or cyclic variation in the sequence of sediments and sedimentary rocks, is useful for quantitative reconstruction of Earth's evolution during geological time. In this study, we attempt to (1) identify sources of natural gamma ray (NGR) emissions of core recovered during Ocean Drilling Program (ODP) Leg 186 by analyses of physical properties, major element concentrations, diatom abundances, and total organic carbon contents, (2) integrate whole-core NGR intensity of recovered core with wireline logging NGR measurements in order to construct a continuous sedimentary sequence, and (3) discuss changes in the NGR signal in the time domain. This attempt gives us preliminary information to discuss climate stability in relation to orbital forcing thorough geologic time. NGR values are obtained mainly by indirectly measuring the amount of terrigenous minerals including potassium and related elements in the sediments. NGR intensity is also affected by high porosity, which in these sediments was related to the amount of diatom valves. NGR signals might be a proxy of the intensity of the East Asian monsoon off Sanriku. A continuous sedimentary record was constructed by integration of the whole-core NGR intensity measured in sediments obtained from the drilled holes with that measured directly in the borehole by wireline logging, then using a stratigraphic age model to convert to a time series covering 1.3-9.7 Ma with a short break at ~5 Ma. High sedimentation rate (H) stages were identified in the sequence, related to intervals of low-amplitude precession and eccentricity variations. The transition of the dominant periodicities through the four H stages may correlate to major shifts in the climate system, including the onset of major Northern Hemisphere glaciation, the initial stage of the East Asian monsoon intensification, and the onset of the East Asian monsoon with uplift of the Himalayas and the Tibetan Plateau.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The late Quaternary organic-walled dinoflagellate cyst record of Site 1233 (41°S, offshore Chile) was studied with a ?200 year resolution spanning the last 25,000 years. The study provides the first continuous record of sub-recent and recent dinoflagellate cysts in the Southeast (SE) Pacific. Major changes in the composition of the cyst association, cyst concentration and morphology of Operculodinium centrocarpum reflect changes in sea surface temperature (SST), sea surface salinity (SSS), palaeoproductivity and upwelling intensity. These changes can be associated with latitudinal shifts of the circumpolar frontal systems. The high cyst concentration, high Brigantedinium spp. abundances, low species diversity and the occurrence of certain cold water species are supportive for a 7-10° equatorward shift of the Antarctic Circumpolar Current (ACC) during the coldest phase of the Last Glacial Maximum (LGM) between 25 and 21.1 cal ka BP. Deglacial warming initiated at ~18.6 cal ka BP. Termination I (18.6-11.1 cal ka BP) is interrupted by an unstable period of extreme seasonality, rather than a cooling event, between 14.4 and 13.2 cal ka BP, synchronous with the Antarctic Cold Reversal (ACR). The Holocene Maximum is observed between 11.6 and 9.8 cal ka BP and is typified by the most southward position of the northern margin of the ACC. A cooling phase occurred during the early Holocene (until ~7 cal ka BP) and during the last ~0.8 ka. Our data indicates that the SE Pacific (41°S) climate has been influenced over the whole record by changes in the Southern Hemisphere (SH) high-latitudes, while during the mid to late Holocene, also a tropical forcing mechanism was involved, including the El Niño Southern Oscillation and the variable Hadley cell intensity. Furthermore, this study showed a relationship between the variable morphology of the spines/processes of O. centrocarpum and the combined variation of sea surface salinity and temperature (SSS/SST-ratio).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present sediment magnetic and chemical analysis of cyclic ocean sediments of the upwelling region of the Lower Congo Basin (equatorial Atlantic). We investigated two >100-k.y. intervals from Ocean Drilling Program Site 1075 to analyze the hysteresis properties, sources of magnetic susceptibility, anhysteretic remanent magnetizations, thermomagnetic behavior, and element concentrations of Fe, Ca, Ti, Mn, and K using an X-ray fluorescence (XRF) core scanner. The upper interval was sampled between 14 and 32 meters composite depth (mcd; 0.09-0.21 Ma) and the lower between 141 and 163 mcd (1.31-1.54 Ma) at a resolution of 20 cm, which represents a temporal resolution of 2.0 and 1.3 k.y., respectively. XRF core-scanner data were acquired at 5-cm intervals. The measurements show that ferri(o)magnetic minerals have no significant influence on the cyclicity of the magnetic susceptibility, which is dominated by paramagnetic and diamagnetic minerals and reflects changes of sediment input from the Congo River. The Fe, Ti, K, and Mn concentrations covary with the magnetic susceptibility where high concentrations of these elements correlate with intervals of high susceptibility and low concentrations with intervals of low susceptibility. The Ca counts correlate well with the calcium carbonate concentration but do not show the same cyclicity as the other elements or the susceptibility. With the exception of the Ca concentration, which is significantly higher in the upper interval, and the magnetic grain size, which indicates that less fine grained magnetite is present in the lower interval, no significant differences in the properties of the upper and the lower intervals were detected.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Geomagnetic excursions are recognized as intrinsic features of the Earth's magnetic field. High-resolution records of field behaviour, captured in marine sedimentary cores, present an opportunity to determine the temporal and geometric character of the field during geomagnetic excursions and provide constraints on the mechanisms producing field variability. We present here the highest resolution record yet published of the Blake geomagnetic excursion (~125 ka) measured in three cores from Ocean Drilling Program (ODP) Site 1062 on the Blake-Bahama Outer Ridge. The Blake excursion has a controversial structure and timing but these cores have a sufficiently high sedimentation rate (~10cm/ka) to allow detailed reconstruction of the field behaviour at this site during the excursion. Palaeomagnetic measurements of the cores reveal rapid transitions (<500 yr) between the contemporary stable normal polarity and a completely reversed state of long duration which spans a stratigraphic interval of 0.7 m. We determine the duration of the reversed state during the Blake excursion using oxygen isotope stratigraphy, combined with 230Th excess measurements to assess variations in the sedimentation rates through the sections of interest. This provides an age and duration for the Blake excursion with greater accuracy and with constrained uncertainty. We date the directional excursion as falling between 129 and 122 ka with a duration for the deviation of 6.5±1.3 kyr. The long duration of this interval and the fully reversed field suggest the existence of a pseudo-stable, reversed dipole field component during the excursion and challenge the idea that excursions are always of short duration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Eocene-Oligocene volcanic rocks drilled at Site 786 in the Izu-Bonin forearc cover a wide range of compositions from primitive boninites to highly evolved rhyolites. K-Ar dating reveals at least two distinct episodes of magmatism; one at 41 Ma and a later one at 35 Ma. The early episode produced low-Ca boninites and bronzite andesites that form an oceanic basement of pillow lavas and composite intrusive sheets, overlain by flows and intrusive sheets of intermediate-Ca boninites and bronzite-andesites and a fractionated series of andesites, dacites, and rhyolites. The later episode produced high-Ca boninites and intermediate-Ca boninites, exclusively as intrusive sheets.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Petrography, major and trace elements, mineral chemistry, and Sr, Nd, and Pb isotopic ratios are reported for igneous rocks drilled on the northern flank of the North d'Entrecasteaux Ridge (NDR) during Ocean Drilling Program (ODP) Leg 134 Site 828. These rocks comprise a breccia unit beneath a middle Eocene foraminiferal ooze. Both geophysical characteristics and the variety of volcanic rocks found at the bottom of Holes 828A and 828B indicate that a very immature breccia or scree deposit was sampled. Basalts are moderately to highly altered, but primary textures are well preserved. Two groups with different magmatic affinities, unrelated to the stratigraphic height, have been distinguished. One group consists of aphyric to sparsely plagioclase + clinopyroxene-phyric basalts, characterized by high TiO2 (~2 wt%) and low Al2O3 (less than 15 wt%) contents, with flat MORB-normalized incompatible element patterns and LREE-depleted chondrite-normalized REE patterns. This group resembles N-MORB. The other group comprises moderately to highly olivine + plagioclase-phyric basalts with low TiO2 (<1 wt%) and high Al2O3 (usually >15 wt%) contents, and marked HFSE depletion and LFSE enrichment. Some lavas in this group are picritic, with relatively high modal olivine abundances, and MgO contents up to 15 wt%. Both the basalts and picritic basalts of this group reflect an influence by subduction-related processes, and have compositions transitional between MORB and IAT. Lavas with similar geochemical features have been reported from small back-arc basins such as the Mariana Trough, Lau Basin, Sulu Sea, and the North Fiji Basin and are referred to as back-arc basin basalts. However, regional tectonic considerations suggest that the spreading that produced these backarc basin basalts may have occurred in the forearc region of the southwest-facing island arc that existed in this region in the Eocene.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The 720 m of igneous basement that was penetrated at Site 786 of Ocean Drilling Program Leg 125 consists of boninite-series volcanics. Bronzite andesites dominate the lithology and primitive magmas of high-Ca, intermediate-Ca, and low-Ca boninite are present in subordinate amounts. Sparsely phyric boninites typically contain olivine and orthopyroxene phenocrysts with Mg numbers [= Mg/(Mg + Fe) in moles] between 86% and 87%. Their high whole-rock Mg numbers, and the absence of zonation in the phenocrysts, imply equilibration at temperatures probably between 1200° and 1250°C, and 20° to 50°C below their liquidus. Equilibrium olivine and orthopyroxene have identical Mg numbers, and Mg/Fe partitioning between these minerals and the melt thus can be described with a single Kd. The invariably phenocryst-rich bronzite andesites contain Plagioclase that has spectacular zoning and mafic phases that can be as magnesian as those of the boninite parent. The most evolved melts are rhyolites with hypersthene, Plagioclase (An50), and magnetite. Eruption temperatures for the rhyolites are estimated at about 1000°C. Some magmas contain ferroactinolite in the groundmass, which is most likely a secondary, low-temperature phase. The locally large contrasts in degree of alteration are consistent with multiple episodes of magmatic activity. However, all igneous events produced boninite volcanics. Only the first, the edifice-building episode, gave rise to differentiated magmas. Differentiation of parental boninites took place by limited fractional crystallization, producing bronzite andesites. The erupted andesites, dacites and rhyolites are filter pressed extracts from these bronzite andesite magmas, which, as a result, have accumulated crystals. Subsequent younger igneous events produced high-Ca and intermediate-Ca boninites which intruded as dikes and sills throughout the basement sequence. The mineralogy of the dikes and sills reflects variable degrees of subliquidus cooling of the magma before emplacement.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Celebes Basin sediments from Ocean Drilling Program Site 767 (Leg 124) containing both marine and terrestrial organic matter have been investigated through palynofacies and geochemical analyses. The main degradation processes affecting or having affected organic matter are recorded in the sedimentary column as shown by ammonium, phosphate and sulfate pore-water profiles, and by petrographic and geochemical analyses of sediments. In the upper part of the sedimentary section (down to 200 mbsf), the decrease of the ratio of total organic carbon to sulfur (TOC/S) with depth, generally related to the sulfate reduction process, is accompanied by an increase of framboidal pyrite content in the marine organic matter, and by an increasing amount of amorphous marine organic matter relative to the total organic matter. However, as the terrestrial organic input also varies with depth, dilution effects are superimposed on diagenesis. This continental supply affects the TOC/S ratio by increasing total organic carbon and decreasing the ability of the bulk organic matter to be metabolized through sulfate reduction. A positive relationship between the TOC/P ratio and the amount of degraded organic matter of marine origin clearly displays the effect of an organic source on the composition of the sediment. Each lithostratigraphic unit possesses its own characteristics in terms of composition and preservation of organic matter. The effects of diagenesis can only be appreciated within a single lithostratigraphic unit and mainly affect the less-resistant marine organic matter.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Holocene and latest Pleistocene oceanographic conditions and the coastal climate of northern California have varied greatly, based upon high-resolution studies (ca. every 100 years) of diatoms, alkenones, pollen, CaCO3%, and total organic carbon at Ocean Drilling Program (ODP) Site 1019 (41.682°N, 124.930°W, 980 m water depth). Marine climate proxies (alkenone sea surface temperatures [SSTs] and CaCO3%) behaved remarkably like the Greenland Ice Sheet Project (GISP)-2 oxygen isotope record during the Bølling-Allerod, Younger Dryas (YD), and early part of the Holocene. During the YD, alkenone SSTs decreased by >3°C below mean Bølling-Allerod and Holocene SSTs. The early Holocene (ca. 11.6 to 8.2 ka) was a time of generally warm conditions and moderate CaCO3 content (generally >4%). The middle part of the Holocene (ca. 8.2 to 3.2 ka) was marked by alkenone SSTs that were consistently 1-2°C cooler than either the earlier or later parts of the Holocene, by greatly reduced numbers of the gyre-diatom Pseudoeunotia doliolus (<10%), and by a permanent drop in CaCO3% to <3%. Starting at ca. 5.2 ka, coastal redwood and alder began a steady rise, arguing for increasing effective moisture and the development of the north coast temperate rain forest. At ca. 3.2 ka, a permanent ca. 1°C increase in alkenone SST and a threefold increase in P. doliolus signaled a warming of fall and winter SSTs. Intensified (higher amplitude and more frequent) cycles of pine pollen alternating with increased alder and redwood pollen are evidence that rapid changes in effective moisture and seasonal temperature (enhanced El Niño-Southern Oscillation [ENSO] cycles) have characterized the Site 1019 record since about 3.5 ka.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Deep-sea benthic foraminiferal assemblages from Ocean Drilling Program (ODP) Site 1143 located in the southern South China Sea (SCS) were investigated to evaluate the relationship between faunal composition patterns and paleoceanographic changes during the last 6 million years (late Miocene to Holocene). We used multivariate statistics (correspondence analysis) to analyze carbon-flux-related changes in assemblage composition of benthic foraminifers. Additional proxies for carbon flux and deep-water ventilation include delta13C records of epifaunal Cibicidoides wuellerstorfi and infaunal Uvigerina peregrina var. dirupta and Melonis pompilioides, benthic foraminiferal accumulation rates (BFARs), diversity indices, and relative abundances of indicator species. We observe three significant benthic faunal changes in the southern South China Sea during the last 6 million years. Strong fluctuations in BFAR and relative abundance of productivity indicator species between glacial and interglacial stages after the mid-Pleistocene revolution (MPR) at approximately 0.9 Ma, indicating stronger seasonal carbon flux fluctuations, are accompanied by the extinction of such species as Stilostomella spp. Increases in carbon flux indicator species are coupled with an overall decrease in benthic foraminifer diversity around 3.0 Ma in the late Pliocene. This may indicate increasing carbon flux in a period of productivity maximum caused by enhanced offshore upwelling from intensified winter monsoon wind strength.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The 853 m thick sediment sequence recovered at ODP Site 1148 provides an unprecedented record of tectonic and paleoceanographic evolution in the South China Sea over the past 33 Ma. Litho-, bio-, and chemo-stratigraphic studies helped identify six periods of changes marking the major steps of the South China Sea geohistory. Rapid deposition with sedimentation rates of 60 m/Ma or more characterized the early Oligocene rifting. Several unconformities from the slumped unit between 457 and 495 mcd together erased about 3 Ma late Oligocene record, providing solid evidence of tectonic transition from rifting/slow spreading to rapid spreading in the South China Sea. Slow sedimentation of ~20-30 m/Ma signifies stable seafloor spreading in the early Miocene. Dissolution may have affected the completeness of Miocene-Pleistocene succession with short-term hiatuses beyond current biostratigraphical resolution. Five major dissolution events, D-1 to D-5, characterize the stepwise development of deep water masses in close association to post-Oligocene South China Sea basin transformation. The concurrence of local and global dissolution events in the Miocene and Pliocene suggests climatic forcing as the main mechanism causing deep water circulation changes concomitantly in world oceans and in marginal seas. A return of high sedimentation rate of 60 m/Ma to the late Pliocene and Pleistocene South China Sea was caused by intensified down-slope transport due to frequent sea level fluctuations and exposure of a large shelf area during sea level low-stands. The six paleoceanographic stages, respectively corresponding to rifting (~33-28.5 Ma), changing spreading southward (28.5-23 Ma), stable spreading to end of spreading (23-15 Ma), post-spreading balance (15-9 Ma), further modification and monsoon influence (9-5 Ma), and glacial prevalence (5-0 Ma), had transformed the South China Sea from a series of deep grabens to a rapidly expanding open gulf and finally to a semi-enclosed marginal sea in the past 33 Ma.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Astoria submarine fan, located off the coast of Washington and Oregon, has grown throughout the Pleistocene from continental input delivered by the Columbia River drainage system. Enormous floods from the sudden release of glacial lake water occurred periodically during the Pleistocene, carrying vast amounts of sediment to the Pacific Ocean. DSDP site 174, located on the southern distal edge of the Astoria Fan, is composed of 879 m of terrigenous sediments. The section is divided into two major units separated by a distinct seismic discontinuity: an upper, turbidite fan unit (Unit I), and an underlying finer-grained unit (Unit II). Both units have overlapping ranges of Nd and Hf isotope compositions, with the majority of samples having e-Nd values of -7.1 to -15.2 and eHf values -6.2 to -20.0; the most notable exception is the uppermost sample in the section, which is identical to modern Columbia River sediment. Nd depleted mantle model ages for the site range from 2.0 to 1.2 Ga and are consistent with derivation from cratonic Proterozoic source regions, rather than Cenozoic and Mesozoic terranes proximal to the Washington-Oregon coast. The Astoria Fan sediments have significantly less radiogenic Nd (and Hf) isotopic compositions than present day Columbia River sediment (e-Nd=-3 to -4; [Goldstein, S.J., Jacobsen, S.B., 1987. Nd and Sr isotopic systematics of river water suspended material: implications for crustal evolution. Earth. Planet. Sci. Lett. 87, 249-265; doi:10.1016/0012-821X(88)90013-1]), and suggest that outburst flooding, tapping Proterozoic source regions, was the dominant sediment transport mechanism in the genesis and construction of the Astoria Fan. Pb isotopes form a highly linear 207Pb/204Pb - 206Pb/204Pb array, and indicate the sediments are a binary mixture of two disparate sources with isotopic compositions similar to Proterozoic Belt Supergroup metasediments and Columbia River Basalts. The combined major, trace and isotopic data argue that outburst flooding was responsible for depositing the majority (top 630 m) of the sediment in the Astoria Fan.