994 resultados para ultrasonic test


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: To evaluate the effect of different cleaning media on the adhesion of resin cement to feldspathic ceramic after etching.Materials and Methods: The cementation surfaces of ceramic blocks (N = 20, n = 5 per group) were etched with 10% hydrofluoric acid (HF) gel for 20 s and rinsed for 60 s. They were then randomly assigned to 4 groups: G1: air-water spray+drying (control); G2: ultrasonic cleaning in distilled water for 4 min+drying; G3: ultrasonic cleaning in 99.5% acetone for 4 min+drying; G4: ultrasonic cleaning in 70% alcohol for 4 min+drying. The ceramic blocks were silanized and cemented (RelyX ARC) to the composite blocks. Subsequently, the microtensile bond strength test (mu TBS) was performed. In addition, EDS analysis was made to assess the elemental composition of the conditioned and cleaned ceramic surfaces.Results: A significantly higher mean mu TBS was obtained when specimens had been ultrasonically cleaned in distilled water (G2: 18.8 +/- 0.4 MPa) (p < 0.05) compared to other groups (G1: 16.6 +/- 0.5; G3: 16.1 +/- 0.9; G4: 15.8 +/- 1.4) (one-way ANOVA). EDS analysis indicated the presence of F- only in G1. Dissolved precipitates after HF etching were removed by ultrasonic cleaning.Conclusion: Cleaning the HF-etched ceramic surface ultrasonically in distilled water is recommended, instead of rinsing it with air-water spray only.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Statement of problem. The use of ultrasonic tips has become an alternative for cavity preparation. However, there are concerns about this type of device, particularly with respect to intrapulpal temperatures and cavity preparation time.Purpose. The purpose of this study was to analyze pulpal temperature increases generated by an ultrasonic cavity preparation with chemical vapor deposition (CVD) tips, in comparison to preparation with a high-speed handpiece with a diamond rotary cutting instrument. The time required to complete the cavity preparation with each system was also evaluated.Material and methods. Thermocouples were positioned in the pulp chamber of 20 extracted human third molars. Slot-type cavities (3 x 3 x 2 mm) were prepared on the buccal and the lingual surfaces of each tooth. The test groups were: high-speed cavity preparation with diamond rotary cutting instruments (n = 20) and ultrasonic cavity preparation with CVD points (n = 20). During cavity preparation, the increases In pulpal temperature, and the time required for the preparation, were recorded and analyzed by Student's t test for paired samples (alpha = .05).Results. The average pulpal temperature increases were 4.3 degrees C for the high-speed preparation and 3.8 degrees C for the ultrasonic preparation, which were statistically similar (P = .052). However, significant differences were found (P < .001) for the time expended (3.3 minutes for the high-speed bur and 13.77 minutes for the ultrasound device).Conclusions. The intrapulpal temperatures produced during cavity preparation by ultrasonic tips versus high-speed bur preparation were similar. However, the use of the ultrasonic device required 4 times longer for the completion of a cavity preparation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Several studies have reported the benefits of sonic and/or ultrasonic instrumentation for root debridement, with most of them focusing on changes in periodontal clinical parameters. The present study investigated possible alterations in the tensile bond strength of crowns cemented with zinc phosphate cement to natural teeth after ultrasonic instrumentation. Forty recently extracted intact human third molars were selected, cleaned and stored in physiologic serum at 4°C. They received standard preparations, at a 16° convergence angle, and AgPd alloy crowns. The crowns were cemented with zinc phosphate cement and then divided into four groups of 10 teeth each. Each group was then subdivided into two subgroups, with one of the subgroups being submitted to 5,000 thermal cycles ranging from 55 ± 2 to 5 ± 2°C, while the other was not. Each group was submitted to ultrasonic instrumentation for different periods of time: group 1 - 0 min (control), group 2 - 5 min, group 3 - 10 min, and group 4 - 15 min. Tensile bond strength tests were performed with an Instron testing machine (model 4310). Statistical analysis was performed using ANOVA and Tukey's test at the 5% level of significance. A significant reduction in the tensile bond strength of crowns cemented with zinc phosphate and submitted to thermal cycles was observed at 15 min (196.75 N versus 0 min = 452.01 N, 5 min = 444.23 N and 10 min = 470.85 N). Thermal cycling and ultrasonic instrumentation for 15 min caused a significant reduction in tensile bond strength (p < .05).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aim: To evaluate the effectiveness of ultrasonic activation of bleaching agents during ex vivo internal bleaching. Methodology: Fifty canine human teeth were artificially stained, root filled and divided into five groups (n = 10) that received SP - sodium perborate plus deionized water (control group), CP - 37% carbamide peroxide gel, CPUS - 37% carbamide peroxide gel plus ultrasonic application, HP - 35% hydrogen peroxide gel or HPUS - 35% hydrogen peroxide gel plus ultrasonic application. In groups CP and HP, the bleaching agent was left inside the pulp chamber for three applications of 10 min. In groups CPUS and HPUS, the same process was performed, but ultrasonic vibration was applied to the bleaching agent by an alloy tip for 30 s, with 30 s intervals. Two sessions were performed. The colour was measured initially and after each session by an intraoral dental spectrophotometer. The variation (Δ) of the colour parameters based on the CIELab system L*, a* and b*, and the colour alteration ΔE* were calculated after first and second section. Data were analysed by one-way anova and Tukey's test. Results: There was no significant difference amongst groups for ΔL*, Δa* and ΔE*, but there was a significant difference for Δb* in the first and second sessions (P = 0.0006 and 0.0016, respectively). After the first session, Δb* was significantly greater for groups HP and HPUS, without a significant difference between them. For the second session, group HPUS had the greatest Δb* values, but they were similar to groups HP and SP; group CP had the lowest values, which were similar to groups CPUS and SP. Conclusion: Ultrasonic activation of bleaching agents during ex vivo internal bleaching was no more effective than conventional internal bleaching procedures, without activation. © 2012 International Endodontic Journal.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study assessed the effect of different etching durations of feldspathic ceramic with hydrofluoric acid (HF) and ultrasonic cleaning of the etched ceramic surface on the microtensile bond strength stability of resin to a feldspathic ceramic. The research hypotheses investigated were: (1) different etching times would not affect the adhesion resistance and (2) ultrasonic cleaning would improve the adhesion. Ceramic blocks (6 x 6 x 5 mm) (N = 48) were obtained. The cementations surfaces were duplicated in resin composite. The six study groups (n = 8) were: G1Etching with 10% aqueous HF (30 s) + silane; G 210% HF (1 min) + silane; G3-10% HF (2 min) + silane; G4-10% HF (30 s) + ultrasonic cleaning (4 min) in distilled water + silane; G5-10% HF (1 min) + ultrasonic cleaning + silane; G6-10% HF (2 min) ultrasonic cleaning + silane. The cemented blocks were sectioned into microbars for the microtensile test. The etching duration did not create significant difference among the groups (p = .156) but significant influence of ultrasonic cleaning was observed (p = .001) (Two-way ANOVA and Tukey's test, p > 0.05). All the groups after ultrasonic cleaning presented higher bond strength (19.38-20.08 MPa) when compared with the groups without ultrasonic cleaning (16.2117.75 MPa). The bond strength between feldspathic ceramic and resin cement was not affected by different etching durations using HF. Ultrasonic cleaning increased the bond strength between ceramic surface and resin cement, regardless of the etching duration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The application of ultrasound waves with a conventional dental ultrasonic scaler on glass ionomer cements surface accelerated initial setting reaction and improved the mechanical properties. Objective: This study evaluated the ultimate tensile strength of glass ionomer cements after ultrasonic excitation and different water storage times. Material and method: Twelve specimens of each material (Fuji IX GP, Ketac Molar Easymix and Vitremer) were prepared, and six of each received a 30-second ultrasound application during initial setting of the cements. After storage of the 24 hours or 30 days, the specimens were sectioned into stick to microtensile testing and the mean ultimate tensile strength values were submitted to Welch’s ANOVA and Tamhane’s test. Result: The results showed that the Vitremer presented the highest mean tensile strength. The chemically set Fuji IX GP presented significantly higher mean tensile strength after 30 days than after 24 hours of storage (p < 0.05). At 24 hours, the ultrasonically set Fuji IX GP presented significantly higher mean tensile strength than their counterparts set under standard conditions (p < 0.05). Conclusion: Treatment with ultrasound increased the tensile strength of Fuji IX GP in the early period of maturation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This in vitro study compared different ultrasonic vibration modes for intraradicular cast post removal. The crowns of 24 maxillary canines were removed, the roots were embedded in acrylic resin blocks, and the canals were treated endodontically. The post holes were prepared and root canal impressions were taken with self-cured resin acrylic. After casting, the posts were cemented with zinc phosphate cement. The samples were randomly distributed into 3 groups (n=8): G1: no ultrasonic vibration (control); G2: tip of the ultrasonic device positioned perpendicularly to core surface and close to the incisal edge; and G3: tip of the ultrasonic device positioned perpendicularly to core surface at cervical region, close to the line of cementation. An Enac OE-5 ultrasound unit with an ST-09 tip was used. All samples were submitted to the tensile test using an universal testing machine at a crosshead speed of 1 mm/min. Data were subjected to one-way ANOVA and Tukey's post-hoc tests (α=0.05). Mean values of the load to dislodge the posts (MPa) were: G1 = 4.6 (± 1.4) A; G2 = 2.8 (± 0.9) B, and G3= 0.9 (± 0.3) C. Therefore, the ultrasonic vibration applied with the tip of device close to the core's cervical area showed higher ability to reduce the retention of cast post to root canal.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Assessment of the integrity of structural components is of great importance for aerospace systems, land and marine transportation, civil infrastructures and other biological and mechanical applications. Guided waves (GWs) based inspections are an attractive mean for structural health monitoring. In this thesis, the study and development of techniques for GW ultrasound signal analysis and compression in the context of non-destructive testing of structures will be presented. In guided wave inspections, it is necessary to address the problem of the dispersion compensation. A signal processing approach based on frequency warping was adopted. Such operator maps the frequencies axis through a function derived by the group velocity of the test material and it is used to remove the dependence on the travelled distance from the acquired signals. Such processing strategy was fruitfully applied for impact location and damage localization tasks in composite and aluminum panels. It has been shown that, basing on this processing tool, low power embedded system for GW structural monitoring can be implemented. Finally, a new procedure based on Compressive Sensing has been developed and applied for data reduction. Such procedure has also a beneficial effect in enhancing the accuracy of structural defects localization. This algorithm uses the convolutive model of the propagation of ultrasonic guided waves which takes advantage of a sparse signal representation in the warped frequency domain. The recovery from the compressed samples is based on an alternating minimization procedure which achieves both an accurate reconstruction of the ultrasonic signal and a precise estimation of waves time of flight. Such information is used to feed hyperbolic or elliptic localization procedures, for accurate impact or damage localization.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Therapy of metacarpal neck fractures depending on radiographically measured palmar angulation is discussed controversially in the literature. Some authors describe normal hand function of malunited metacarpal neck fractures with a palmar angulation up to 70°; others define 30° as the uppermost limit to maintain normal hand function. However, the methods of measuring palmar angulation are not clearly defined. Here, we present a new method to measure palmar angulation using ultrasound. The aim of this prospective study is to compare the radiographic methods of measuring palmar angulation with the ultrasound method. PATIENTS/MATERIAL AND METHOD: 20 patients with a neck fracture of the metacarpals IV or V were treated either conservatively or operatively. 2 weeks after trauma or operation, an x-ray was performed. 2 examiners measured the palmar angulation on the oblique and lateral projections using 2 different methods (medullary canal and dorsal cortex methods). At the same time, the 2 examiners performed measurements of palmar angulation using ultrasound. The measurements obtained with the different methods as well as by the 2 examiners at 2 different terms were compared. Intra- and interobserver reliability of each method was calculated, and for the ultrasound method a test for accuracy of the measured angles was performed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background Small airway disease frequently occurs in chronic lung diseases and may cause ventilation inhomogeneity (VI), which can be assessed by washout tests of inert tracer gas. Using two tracer gases with unequal molar mass (MM) and diffusivity increases specificity for VI in different lung zones. Currently washout tests are underutilised due to the time and effort required for measurements. The aim of this study was to develop and validate a simple technique for a new tidal single breath washout test (SBW) of sulfur hexafluoride (SF6) and helium (He) using an ultrasonic flowmeter (USFM). Methods The tracer gas mixture contained 5% SF6 and 26.3% He, had similar total MM as air, and was applied for a single tidal breath in 13 healthy adults. The USFM measured MM, which was then plotted against expired volume. USFM and mass spectrometer signals were compared in six subjects performing three SBW. Repeatability and reproducibility of SBW, i.e., area under the MM curve (AUC), were determined in seven subjects performing three SBW 24 hours apart. Results USFM reliably measured MM during all SBW tests (n = 60). MM from USFM reflected SF6 and He washout patterns measured by mass spectrometer. USFM signals were highly associated with mass spectrometer signals, e.g., for MM, linear regression r-squared was 0.98. Intra-subject coefficient of variation of AUC was 6.8%, and coefficient of repeatability was 11.8%. Conclusion The USFM accurately measured relative changes in SF6 and He washout. SBW tests were repeatable and reproducible in healthy adults. We have developed a fast, reliable, and straightforward USFM based SBW method, which provides valid information on SF6 and He washout patterns during tidal breathing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The wake produced by the structural supports of the ultrasonic anemometers (UAs)causes distortions in the velocity field in the vicinity of the sonic path. These distortions are measured by the UA, inducing errors in the determination of the mean velocity, turbulence intensity, spectrum, etc.; basic parameters to determine the effect of wind on structures. Additionally, these distortions can lead to indefinition in the calibration function of the sensors (Cuerva et al., 2004). Several wind tunnel tests have been dedicated to obtaining experimental data, from which have been developed fit models to describe and to correct these distortions (Kaimal, 1978 and Wyngaard, 1985). This work explores the effect of a vortex wake generated by the supports of an UA, on the measurement of wind speed done by this instrument. To do this, the Von Karman¿s vortex street potential model is combined with the mathematical model of the measuring process carried out by UAs developed by Franchini et al. (2007). The obtained results are the correction functions of the measured wind velocity, which depends on the geometry of the sonic anemometer and aerodynamic conditions. These results have been validated with the ones obtained in a wind tunnel test done on a single path UA, especially developed for research. The supports of this UA have been modified in order to reproduce the conditions of the theoretical model. Good agreements between experimental and theoretical results have been found.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper studies the fracturing process in low-porous rocks during uniaxial compressive tests considering the original defects and the new mechanical cracks in the material. For this purpose, five different kinds of rocks have been chosen with carbonate mineralogy and low porosity (lower than 2%). The characterization of the fracture damage is carried out using three different techniques: ultrasounds, mercury porosimetry and X-ray computed tomography. The proposed methodology allows quantifying the evolution of the porous system as well as studying the location of new cracks in the rock samples. Intercrystalline porosity (the smallest pores with pore radius < 1 μm) shows a limited development during loading, disappearing rapidly from the porosimetry curves and it is directly related to the initial plastic behaviour in the stress–strain patterns. However, the biggest pores (corresponding to the cracks) suffer a continuous enlargement until the unstable propagation of fractures. The measured crack initiation stress varies between 0.25 σp and 0.50 σp for marbles and between 0.50 σp and 0.85 σp for micrite limestone. The unstable propagation of cracks is assumed to occur very close to the peak strength. Crack propagation through the sample is completely independent of pre-existing defects (porous bands, stylolites, fractures and veins). The ultrasonic response in the time-domain is less sensitive to the fracture damage than the frequency-domain. P-wave velocity increases during loading test until the beginning of the unstable crack propagation. This increase is higher for marbles (between 15% and 30% from initial vp values) and lower for micrite limestones (between 5% and 10%). When the mechanical cracks propagate unstably, the velocity stops to increase and decreases only when rock damage is very high. Frequency analysis of the ultrasonic signals shows clear changes during the loading process. The spectrum of treated waveforms shows two main frequency peaks centred at low (~ 20 kHz) and high (~ 35 kHz) values. When new fractures appear and grow the amplitude of the high-frequency peak decreases, while that of the low-frequency peak increases. Besides, a slight frequency shift is observed towards higher frequencies.