998 resultados para ultrashort pulse laser
Resumo:
High-resolution chemical depth profiling measurements of copper films are presented. The 10 μm thick copper test samples were electrodeposited on a Si-supported Cu seed under galvanostatic conditions in the presence of particular plating additives (SPS, Imep, PEI, and PAG) used in the semiconductor industry for the on-chip metallization of interconnects. To probe the trend of these plating additives toward inclusion into the deposit upon growth, quantitative elemental mass spectrometric measurements at trace level concentration were conducted by using a sensitive miniature laser ablation ionization mass spectrometer (LIMS), originally designed and developed for in situ space exploration. An ultrashort pulsed laser system (τ ∼ 190 fs, λ = 775 nm) was used for ablation and ionization of sample material. We show that with our LIMS system, quantitative chemical mass spectrometric analysis with an ablation rate at the subnanometer level per single laser shot can be conducted. The measurement capabilities of our instrument, including the high vertical depth resolution coupled with high detection sensitivity of ∼10 ppb, high dynamic range ≥10(8), measurement accuracy and precision, is of considerable interest in various fields of application, where investigations with high lateral and vertical resolution of the chemical composition of solid materials are required, these include, e.g., wafers from semiconductor industry or studies on space weathered samples in space research.
Resumo:
Lesões dentais por erosão têm sido cada vez mais presentes na prática clínica. A restauração direta com resina composta é uma das opções de tratamento para lesões severas, em que há comprometimento estético/funcional. Com o aprimoramento da tecnologia, a utilização do laser para pré-tratamento da superfície dentinária, antes do condicionamento ácido, tem sido considerada como método alternativo para melhorar a adesão das resinas compostas às superfícies erodidas. Assim, o objetivo deste estudo in vitro foi avaliar a influência da irradiação com laser de Er:YAG (2,94 ?m), de pulso super-curto, na adesão da resina composta à superfície dentinária erodida. Quarenta e seis discos de dentina foram obtidos a partir de 46 dentes terceiros molares humanos. A dentina oclusal planificada de 40 molares humanos teve metade de sua face protegida com fita UPVC (dentina hígida), enquanto na outra metade foi produzida uma lesão de erosão através da ciclagem em ácido cítrico (0,05 M, pH 2,3, 10 minutos, 6x/dia) e solução supersaturada (pH 7,0, 60 minutos entre os ataques ácidos). Metade das amostras foi irradiada com o laser de Er:YAG (50 ?s, 2 Hz, 80 mJ, 12,6 J/cm2) e a outra não (grupo controle). Em cada grupo de tratamento (laser ou controle) (n=10), um sistema adesivo autocondicionante foi utilizado e, então, confeccionados 2 cilindros de resina composta, tanto do lado erodido como no hígido (total de 4 cilindros), os quais foram submetidos à avaliação da Resistência de União através do ensaio de microcisalhamento (1 mm/min), após armazenamento em saliva artificial por 24 h. A análise do padrão de fratura foi realizada em microscópio óptico (40x). Por meio da Microscopia Eletrônica de Varredura (MEV), a morfologia das superfícies dentinárias hígida e submetida ao desafio erosivo, antes e após o tratamento com laser de Er:YAG (n=3), foi avaliada. Os valores obtidos de resistência de união (MPa) foram submetidos ao teste ANOVA e de comparações múltiplas de Tukey (p<0,05) e as análises das eletromicrografias foram feitas de forma descritiva. A análise morfológica da superfície mostrou alterações significativas na dentina hígida irradiada e na submetida à ciclagem erosiva, irradiada ou não. Quanto à resistência de união, houve diferença entre os 4 substratos analisados, sendo: dentina hígida irradiada (12,77±5,09 A), dentina hígida não irradiada (9,76±3,39 B), dentina erodida irradiada (7,62±3,39 C) e dentina erodida não irradiada (5,12±1,72 D). Houve predominância de padrão de fratura do tipo adesiva. Com base nos resultados e nos parâmetros de irradiação utilizados neste estudo, pode-se concluir que a erosão reduz a adesão em dentina e que o tratamento da superfície dentinária com laser de Er:YAG de largura de pulso super curta aumenta a adesão no substrato erodido ou hígido.
Resumo:
Optical fiber microwires (OFMs) are nonlinear optical waveguides that support several spatial modes. The multimodal generalized nonlinear Schrodinger equation (MM-GNLSE) is deduced taking into account the linear and nonlinear modal coupling. A detailed theoretical description of four-wave mixing (FWM) considering the modal coupling is developed. Both, the intramode and the intermode phase-matching conditions is calculated for an optical microwire in a strong guiding regime. Finally, the FWM dynamics is studied and the amplitude evolution of the pump beams, the signal and the idler are analyzed.
Resumo:
The split-pulse laser method is used to reinvestigate the optical attenuation of distilled water in the region from 430 to 630 nm. The studies are then extended to ionic solutions of NaCl, MgCl2, and Na2SO4, these salts forming the major constituents of seawater. The effect of the concentration of these constituents on optical attenuation is investigated. Further, optical attenuation studies are carried out for the region from 430 to 630 nm for an aqueous solution prepared with all the major constituents in the same proportions as in natural seawater. These values are then compared with values obtained for natural seawater. The relative role of dissolved salts and suspended particles on optical attenuation in seawater is discussed. The lowest attenuation is observed at ~450 nm for all solutions and is found to coincide with that for distilled water.
Resumo:
Time-resolved diffraction with femtosecond electron pulses has become a promising technique to directly provide insights into photo induced primary dynamics at the atomic level in molecules and solids. Ultrashort pulse duration as well as extensive spatial coherence are desired, however, space charge effects complicate the bunching of multiple electrons in a single pulse.Weexperimentally investigate the interplay between spatial and temporal aspects of resolution limits in ultrafast electron diffraction (UED) on our highly compact transmission electron diffractometer. To that end, the initial source size and charge density of electron bunches are systematically manipulated and the resulting bunch properties at the sample position are fully characterized in terms of lateral coherence, temporal width and diffracted intensity.Weobtain a so far not reported measured overall temporal resolution of 130 fs (full width at half maximum) corresponding to 60 fs (root mean square) and transversal coherence lengths up to 20 nm. Instrumental impacts on the effective signal yield in diffraction and electron pulse brightness are discussed as well. The performance of our compactUEDsetup at selected electron pulse conditions is finally demonstrated in a time-resolved study of lattice heating in multilayer graphene after optical excitation.
Resumo:
In this study we investigated the light distribution under femtosecond laser illumination and its correlation with the collected diffuse scattering at the surface of ex-vivo rat skin and liver. The reduced scattering coefficients mu`s for liver and skin due to different scatterers have been determined with Mie-scattering theory for each wavelength (800, 630, and 490 nm). Absorption coefficients mu(a) were determined by diffusion approximation equation in correlation with measured diffused reflectance experimentally for each wavelength (800, 630, and 490 nm). The total attenuation coefficient for each wavelength and type of tissue were determined by linearly fitting the log based normalized intensity. Both tissues are strongly scattering thick tissues. Our results may be relevant when considering the use of femtosecond laser illumination as an optical diagnostic tool. [GRAPHICS] A typical sample of skin exposed to 630 nm laser light (C) 2010 by Astro Ltd. Published exclusively by WILEY-VCH Verlag GmbH & Co. KGaA
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Física - FEG
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The nonlinear index of refraction (n(2)) and the two-photon absorption coefficient (beta) of water-based ferrofluids made of magnetite nanocrystals of different sizes and with different coatings have been measured through the Z-scan technique, with ultrashort (femtoseconds) laser pulses. Their third-order susceptibility is calculated from the values of n(2) and beta. The influence of different particles' coatings and sizes on these nonlinear optical properties are investigated. The values of n(2) and beta depend more significantly on the nanoparticles' size than on the particular coating. We observe a decrease of beta as the nanoparticles' diameters decrease, although the optical gap is found to be the same for all samples. The results are interpreted considering modifications in the electronic orbital shape due to the particles' nanosize effect.
Resumo:
This paper will review the recent advances in the field of ultrashort pulse generation from optically pumped vertical-external-cavity surface-emitting lasers (OP-VECSELs). In this review, we will summarize the most significant results presented over the last 15 years, before highlighting recent breakthroughs related to mode-locked VECSELs by different research groups. Different mode-locking techniques for OP-VECSELs are described in detail. Previously, saturable absorbers, such as semiconductor saturable absorber mirrors—external, or internal as in mode-locked integrated external-cavity surface emitting lasers (MIXSEL)—, and recently, novel-material-based carbon-nanotube and graphene saturable absorbers have been employed. A new mode-locking method was presented and discussed in recent years. This method is referred to as self-mode-locking or saturable-absorber-free operation of mode-locked VECSELs. In this context, we particularly focus on achievements regarding self-mode-locking, which is considered a promising technique for the realization of high-power, compact, robust and cost-efficient ultrashort pulse lasers. To date, the presented mode-locking techniques have led to great enhancement in average powers, peak powers, and repetition rates that can be achieved with passively mode-locked VECSELs.
Resumo:
We introduce a hybrid method for dielectric-metal composites that describes the dynamics of the metallic system classically whilst retaining a quantum description of the dielectric. The time-dependent dipole moment of the classical system is mimicked by the introduction of projected equations of motion (PEOM) and the coupling between the two systems is achieved through an effective dipole-dipole interaction. To benchmark this method, we model a test system (semiconducting quantum dot-metal nanoparticle hybrid). We begin by examining the energy absorption rate, showing agreement between the PEOM method and the analytical rotating wave approximation (RWA) solution. We then investigate population inversion and show that the PEOM method provides an accurate model for the interaction under ultrashort pulse excitation where the traditional RWA breaks down.
Resumo:
We describe a parallel multi-threaded approach for high performance modelling of wide class of phenomena in ultrafast nonlinear optics. Specific implementation has been performed using the highly parallel capabilities of a programmable graphics processor. © 2011 SPIE.
Resumo:
We demonstrate a simple self-referenced single-shot method for simultaneously measuring two different arbitrary pulses, which can potentially be complex and also have very different wavelengths. The method is a variation of cross-correlation frequency-resolved optical gating (XFROG) that we call double-blind (DB) FROG. It involves measuring two spectrograms, both of which are obtained simultaneously in a single apparatus. DB FROG retrieves both pulses robustly by using the standard XFROG algorithm, implemented alternately on each of the traces, taking one pulse to be ?known? and solving for the other. We show both numerically and experimentally that DB FROG using a polarization-gating beam geometry works reliably and appears to have no nontrivial ambiguities.
Resumo:
This paper presents the current status of our research in mode-locked quantum-dot edge-emitting laser diodes, particularly highlighting the recent progress in spectral and temporal versatility of both monolithic and external-cavity laser configurations. Spectral versatility is demonstrated through broadband tunability and novel mode-locking regimes that involve distinct spectral bands, such as dual-wavelength mode-locking, and robust high-power wavelength bistability. Broad tunability of the pulse repetition rate is also demonstrated for an external-cavity mode-locked quantum-dot laser, revealing a nearly constant pulse peak power at different pulse repetition rates. High-energy and low-noise pulse generations are demonstrated for low-pulse repetition rates. These recent advances confirm the potential of quantum-dot lasers as versatile, compact, and low-cost sources of ultrashort pulses. © 2011 IEEE.