920 resultados para ultrafine-grained steel


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Mecânica - FEIS

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We report here the development of ultrafine grained ZrB2-SiC composites using TiSi2 as the sintering aid and spark plasma sintering (SPS) as the processing technique. It was observed that the presence of TiSi2 improved the sinterability of the composites, such that near theoretical densification (99.9%) could be achieved for ZrB2-18 wt.% SiC-5 wt.% TiSi2 composites after SPS at 1600 degrees C for 10 min at 50 MPa. Use of innovative multi stage sintering (MSS) route, which involved holding the samples at lower (intermediate) temperatures for some time before holding at the final temperature, while keeping the net holding time to 10 min, allowed attainment of full densification of ZrB2-18 wt.% SiC-2.5 wt.% TiSi2 at a still lower final temperature of 1500 degrees C at 30 MPa. TEM observations, which revealed the presence of anisotropic ZrB2 grains with faceted grain boundaries and TiSi2 at the intergranular regions, suggested the occurrence of liquid phase sintering in the presence of TiSi2. No additional phase was detected in XRD as well as TEM, which confirmed the absence of any sintering reaction. The as developed composites possessed an excellent combination of Vickers hardness and indentation toughness, both of which increased with increase in TiSi2 content, such that the ZrBi2-18 wt.% SiC-5 wt.% TiSi2 (SPS processed at 1600 degrees C) possessed hardness of similar to 20 GPa and indentation toughness of similar to 5 MPa m(1/2). The use of MSS SPS at 1500 degrees C for ZrBi2-18 wt.% SiC-2.5 wt.% TiSi2 composite resulted in improvement in hardness of up to similar to 27 GPa and attainment of high flexural strength of similar to 455 MPa. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Friction stir processing was carried out on the Al-Mg-Mn alloy to achieve ultrafine grained microstructure. The evolution of microstructure and micro-texture was studied in different regions of the deformed sample, namely nugget zone, thermo-mechanically affected zone (TMAZ) and base metal. The average grain sizes of the nugget zone, TMAZ and base metal are 1.5 mu m +/- 0.5 mu m, 15 mu m +/- 8 mu m, and 80 mu m +/- 10 mu m, respectively. The TMAZ exhibits excessive deformation banding structure and sub-grain formation. The orientation gradient within the sub-grain is dependent on grain size, orientation, and distance from nugget zone. The microstructure was partitioned based on the grain orientation spread and grain size values to separate the recrystallized fraction from the deformed region in order to understand the micromechanism of grain refinement. The texture of both deformed and recrystallized regions are similar in nature. Microstructure and texture analysis suggest that the restoration processes are different in different regions of the processed sample. The transition region between nugget zone and TMAZ exhibits large elongated grains surrounded by fine equiaxed grains of different orientation which indicate the process of discontinuous dynamic recrystallization. Within the nugget zone, similar texture between deformed and recrystallized grain fraction suggests that the restoration mechanism is a continuous process.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the present study, high strength bulk ultrafine-grained titanium alloy Ti-6Al-4V bars were successfully processed using multi-pass warm rolling. Ti-6Al-4V bars of 12 mm diameter and several metres long were processed by multi-pass warm rolling at 650 degrees C, 700 degrees C and 750 degrees C. The highest achieved mechanical properties for Ti-6Al-4V in as rolled condition were yield strength 1191 MPa, ultimate tensile strength of 1299 MPa having an elongation of 10% when the rolling temperature was 650 degrees C. The concurrent evolution of microstructure and texture has been studied using optical microscopy, electron back scattered diffraction and x-ray diffraction. The significant improvement in mechanical properties has been attributed to the ultrafine-grained microstructure as well as the morphology of alpha and beta phases in the warm rolled specimens. The warm rolling of Ti-6Al-4V leads to formation of < 10 (1) over bar0 >alpha//RD fibre texture. This study shows that multi-pass warm rolling has potential to eliminate the costly and time consuming heat treatment steps for small diameter bar products, as the solution treated and aged (STA) properties are achievable in the as rolled condition itself. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Knowledge of the plasticity associated with the incipient stage of chip formation is useful toward developing an understanding of the deformation field underlying severe plastic deformation processes. The transition from a transient state of straining to a steady state was investigated in plane strain machining of a model material system-copper. Characterization of the evolution to a steady-state deformation field was made by image correlation, hardness mapping, load analysis, and microstructure characterization. Empirical relationships relating the deformation heterogeneity and the process parameters were found and explained by the corresponding effects on shear plane geometry. The results are potentially useful to facilitate a framework for process design of large strain deformation configurations, wherein transient deformation fields prevail. These implications are considered in the present study to quantify the efficiency of processing methods for bulk ultrafine-grained metals by large strain extrusion machining and equal channel angular pressing.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

基于亚微米、纳米晶粒组织塑性变形过程中多种变形机制(位错机制、扩散机制及晶界滑动机制)共存,建立了理论模型,用于定量研究亚微米、纳米晶粒组织的塑性变形行为.以铜为模型材料,计算分析了晶粒尺度、应变率以及温度对亚微米、纳米晶粒组织塑性变形行为的影响.结果表明:相比粗晶铜,亚微米晶铜表现出明显的应变率敏感性,并且应变率敏感系数随晶粒尺度及变形速率的减小而增大;同时,增大变形速率或降低变形温度都能提高材料的应变硬化能力,延缓颈缩发生,进而提高材料的延性.计算分析结果与实验报道吻合.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Deformation twinning is observed upon large plastic deformation in nanocrystalline (nc) Ni by transmission electron microscopy examinations. New and compelling evidence has been obtained for several twinning mechanisms that operate in nc grains, with the gain boundary emission of partial dislocations determined as the most proficient. Deformation twinning in nc Ni is discussed in comparison with molecular dynamics simulation results, based on generalized planar fault energy curves.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this work, an experimental and numerical analysis and characterization of functionally graded structures (FGSs) is developed. Nickel (Ni) and copper (Cu) materials are used as basic materials in the numerical modeling and experimental characterization. For modeling, a MATLAB finite element code is developed, which allows simulation of harmonic and modal analysis considering the graded finite element formulation. For experimental characterization, Ni-Cu FGSs are manufactured by using spark plasma sintering technique. Hardness and Young's modulus are found by using microindentation and ultrasonic measurements, respectively. The effective gradation of Ni/Cu FGS is addressed by means of optical microscopy, energy dispersive spectrometry, scanning electron microscopy and hardness testing. For the purpose of comparing modeling and experimental results, the hardness curve, along the gradation direction, is used for identifying the gradation profile; accordingly, the experimental hardness curve is used for approximating the Young's modulus variation and the graded finite element modeling is used for verification. For the first two resonance frequency values, a difference smaller than 1% between simulated and experimental results is obtained. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Paleomagnetic and rock-magnetic analyses from discrete samples of carbonate sites on the Queensland Plateau were used to determine magnetic polarity reversal stratigraphy and the nature of magnetization in these sediments. Magnetic polarity zones were correlated with the geomagnetic polarity time scale in the upper portions of cores at Sites 812 through 814, usually back to a late Pliocene age. Loss of reliable directional data was coincidental with a major decrease in magnetic intensity, below which, no stable polarity zones could be identified. The intensity reduction is either an in-situ alteration of magnetic grains, or an input signal representing progressive increase in the magnetic component of Queensland Plateau sediments. Although not conclusive at this point, the geochemical conditions and differing age of intensity reduction support the former hypothesis. Rock-magnetic analysis of carbonate sediments suggests that ultrafine-grained magnetite or maghemite crystals is an important carrier of remanence and may be biogenic in origin. Application of a recently calibrated anhysteretic remanent magnetization test to assess configuration of single-domain crystal within a natural matrix indicates that cementation (ooze-chalk-limestone) may be important in post-depositional changes affecting magnetostatic grain interaction.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Long-length ultrafine-grained (UFG) Ti rods are produced by equal-channel angular pressing via the conform scheme (ECAP-C) at 200 °C, which is followed by drawing at 200 °C. The evolution of microstructure, macrotexture, and mechanical properties (yield strength, ultimate tensile strength, failure stress, uniform elongation, elongation to failure) of pure Ti during this thermo-mechanical processing is studied. Special attention is also paid to the effect of microstructure on the mechanical behavior of the material after macrolocalization of plastic flow. The number of ECAP-C passes varies in the range of 1–10. The microstructure is more refined with increasing number of ECAP-C passes. Formation of homogeneous microstructure with a grain/subgrain size of 200 nm and its saturation after 6 ECAP-C passes are observed. Strength properties increase with increasing number of ECAP passes and saturate after 6 ECAP-C passes to a yield strength of 973 MPa, an ultimate tensile strength of 1035 MPa, and a true failure stress of 1400 MPa (from 625, 750, and 1150 MPa in the as-received condition). The true strain at failure failure decreases after ECAP-C processing. The reduction of area and true strain to failure values do not decrease after ECAP-C processing. The sample after 6 ECAP-C passes is subjected to drawing at 200¯C resulting in reduction of a grain/subgrain size to 150 nm, formation of (10 View the MathML source1¯0) fiber texture with respect to the rod axis, and further increase of the yield strength up to 1190 MPa, the ultimate tensile strength up to 1230 MPa and the true failure stress up to 1600 MPa. It is demonstrated that UFG CP Ti has low resistance to macrolocalization of plastic deformation and high resistance to crack formation after necking.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper highlights the microstructural features of commercially available interstitial free (IF) steel specimens deformed by equal channel angular pressing (ECAP) up to four passes following the route A. The microstructure of the samples was studied by different techniques of X-ray diffraction peak profile analysis as a function of strain (epsilon). It was found that the crystallite size is reduced substantially already at epsilon=2.3 and it does not change significantly during further deformation. At the same time, the dislocation density increases gradually up to epsilon=4.6. The dislocation densities estimated from X-ray diffraction study are found to correlate very well with the experimentally obtained yield strength of the samples.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Near threshold fatigue crack growth behavior of a high strength steel under different temper levels was investigated. It is found that the observed variations in ΔKth could predominantly be attributed to roughness induced crack closure. The closure-free component of the threshold stress intensity range, ΔKeff,th showed a systematic variation with monotonic yield strength.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The present study is focused on the characterization of ultrafine particles emitted in welding of steel using mixtures of Ar+CO2, and intends to analyze which are the main process parameters which may have influence on the emission itself. It was found that the amount of emitted ultrafine particles (measured by particle number and alveolar deposited surface area) are clearly dependent from the distance to the welding front and also from the main welding parameters, namely the current intensity and heat input in the welding process. The emission of airborne ultrafine particles seem to increase with the current intensity as fume formation rate does. When comparing the tested gas mixtures, higher emissions are observed for more oxidant mixtures, that is, mixtures with higher CO2 content, which result in higher arc stability. The later mixtures originate higher concentrations of ultrafine particles (as measured by number of particles by cm3 of air) and higher values of alveolar deposited surface area of particles, thus resulting in a more hazardous condition regarding worker's exposure. © 2014 Sociedade Portuguesa de Materiais (SPM). Published by Elsevier España, S.L. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The high-temperature oxidation behavior of modified 304 austenitic stainless steels in a water vapor atmosphere was investigated. Samples were prepared by various thermo mechanical treatments to result in different grain sizes in the range 8-30 mu m. Similar I 3 pound grain boundary fraction was achieved to eliminate any grain-boundary characteristics effect. Samples were oxidized in an air furnace at 700 A degrees C with 20 % water vapor atmosphere. On the fine-grained sample, a uniform Cr2O3 layer was formed, which increased the overall oxidation resistance. Whereas on the coarse-grained sample, an additional Fe2O3 layer formed on the Cr-rich oxide layer, which resulted in a relatively high oxidation rate. In the fine-grained sample, grain boundaries act as rapid diffusion paths for Cr and provided enough Cr to form Cr2O3 oxide on the entire sample surface.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present study aims to characterize ultrafine particles emitted during gas metal arc welding of mild steel and stainless steel, using different shielding gas mixtures, and to evaluate the effect of metal transfer modes, controlled by both processing parameters and shielding gas composition, on the quantity and morphology of the ultrafine particles. It was found that the amount of emitted ultrafine particles (measured by particle number and alveolar deposited surface area) are clearly dependent from the main welding parameters, namely the current intensity and the heat input of the Welding process. The emission of airborne ultrafine particles increases with the current intensity as fume formation rate does. When comparing the shielding gas mixtures, higher emissions were observed for more oxidizing mixtures, that is, with higher CO2 content, which means that these mixtures originate higher concentrations of ultrafine particles (as measured by number of particles. by cubic centimeter of air) and higher values of alveolar deposited surface area of particles, thus resulting in a more hazardous condition regarding welders exposure.