742 resultados para ultrafine grained alloys
Resumo:
In the present study, high strength bulk ultrafine-grained titanium alloy Ti-6Al-4V bars were successfully processed using multi-pass warm rolling. Ti-6Al-4V bars of 12 mm diameter and several metres long were processed by multi-pass warm rolling at 650 degrees C, 700 degrees C and 750 degrees C. The highest achieved mechanical properties for Ti-6Al-4V in as rolled condition were yield strength 1191 MPa, ultimate tensile strength of 1299 MPa having an elongation of 10% when the rolling temperature was 650 degrees C. The concurrent evolution of microstructure and texture has been studied using optical microscopy, electron back scattered diffraction and x-ray diffraction. The significant improvement in mechanical properties has been attributed to the ultrafine-grained microstructure as well as the morphology of alpha and beta phases in the warm rolled specimens. The warm rolling of Ti-6Al-4V leads to formation of < 10 (1) over bar0 >alpha//RD fibre texture. This study shows that multi-pass warm rolling has potential to eliminate the costly and time consuming heat treatment steps for small diameter bar products, as the solution treated and aged (STA) properties are achievable in the as rolled condition itself. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
Knowledge of the plasticity associated with the incipient stage of chip formation is useful toward developing an understanding of the deformation field underlying severe plastic deformation processes. The transition from a transient state of straining to a steady state was investigated in plane strain machining of a model material system-copper. Characterization of the evolution to a steady-state deformation field was made by image correlation, hardness mapping, load analysis, and microstructure characterization. Empirical relationships relating the deformation heterogeneity and the process parameters were found and explained by the corresponding effects on shear plane geometry. The results are potentially useful to facilitate a framework for process design of large strain deformation configurations, wherein transient deformation fields prevail. These implications are considered in the present study to quantify the efficiency of processing methods for bulk ultrafine-grained metals by large strain extrusion machining and equal channel angular pressing.
Resumo:
基于亚微米、纳米晶粒组织塑性变形过程中多种变形机制(位错机制、扩散机制及晶界滑动机制)共存,建立了理论模型,用于定量研究亚微米、纳米晶粒组织的塑性变形行为.以铜为模型材料,计算分析了晶粒尺度、应变率以及温度对亚微米、纳米晶粒组织塑性变形行为的影响.结果表明:相比粗晶铜,亚微米晶铜表现出明显的应变率敏感性,并且应变率敏感系数随晶粒尺度及变形速率的减小而增大;同时,增大变形速率或降低变形温度都能提高材料的应变硬化能力,延缓颈缩发生,进而提高材料的延性.计算分析结果与实验报道吻合.
Resumo:
Deformation twinning is observed upon large plastic deformation in nanocrystalline (nc) Ni by transmission electron microscopy examinations. New and compelling evidence has been obtained for several twinning mechanisms that operate in nc grains, with the gain boundary emission of partial dislocations determined as the most proficient. Deformation twinning in nc Ni is discussed in comparison with molecular dynamics simulation results, based on generalized planar fault energy curves.
Resumo:
The microstructure evolution and mechanical behavior during large strain of a 0.16%C-Mn steel has been investigated by warm torsion tests. These experiments were carried out at 685°C at equivalent strain rate of 0.1 s . The initial microstructure composed of a martensite matrix with uniformly dispersed fine cementite particles was attained by quenching and tempering. The microstructure evolution during tempering and straining was performed through interrupted tests. As the material was reheated to testing temperature, well-defined cell structure was created and subgrains within lath martensite were observed by TEM; strong recovery took place, decreasing the dislocation density. After 1 hour at the test temperature and without straining, EBSD technique showed the formation of new grains. The flow stress curves measured had a peculiar shape: rapid work hardening to a hump, followed by an extensive flow-softening region. 65% of the boundaries observed in the sample strained to ε = 1.0 were high angle grain boundaries. After straining to ε = 5.0, average ferrite grain size close to 1.5 μm was found, suggesting that dynamic recrystallization took place. Also, two sets of cementite particles were observed: large particles aligned with straining direction and smaller particles more uniformly dispersed. The fragmentation or grain subdivision that occurred during reheating and tempering time was essential for the formation of ultrafine grained microstructure.
Resumo:
Pós-graduação em Engenharia Mecânica - FEIS
Resumo:
In this work, an experimental and numerical analysis and characterization of functionally graded structures (FGSs) is developed. Nickel (Ni) and copper (Cu) materials are used as basic materials in the numerical modeling and experimental characterization. For modeling, a MATLAB finite element code is developed, which allows simulation of harmonic and modal analysis considering the graded finite element formulation. For experimental characterization, Ni-Cu FGSs are manufactured by using spark plasma sintering technique. Hardness and Young's modulus are found by using microindentation and ultrasonic measurements, respectively. The effective gradation of Ni/Cu FGS is addressed by means of optical microscopy, energy dispersive spectrometry, scanning electron microscopy and hardness testing. For the purpose of comparing modeling and experimental results, the hardness curve, along the gradation direction, is used for identifying the gradation profile; accordingly, the experimental hardness curve is used for approximating the Young's modulus variation and the graded finite element modeling is used for verification. For the first two resonance frequency values, a difference smaller than 1% between simulated and experimental results is obtained. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Paleomagnetic and rock-magnetic analyses from discrete samples of carbonate sites on the Queensland Plateau were used to determine magnetic polarity reversal stratigraphy and the nature of magnetization in these sediments. Magnetic polarity zones were correlated with the geomagnetic polarity time scale in the upper portions of cores at Sites 812 through 814, usually back to a late Pliocene age. Loss of reliable directional data was coincidental with a major decrease in magnetic intensity, below which, no stable polarity zones could be identified. The intensity reduction is either an in-situ alteration of magnetic grains, or an input signal representing progressive increase in the magnetic component of Queensland Plateau sediments. Although not conclusive at this point, the geochemical conditions and differing age of intensity reduction support the former hypothesis. Rock-magnetic analysis of carbonate sediments suggests that ultrafine-grained magnetite or maghemite crystals is an important carrier of remanence and may be biogenic in origin. Application of a recently calibrated anhysteretic remanent magnetization test to assess configuration of single-domain crystal within a natural matrix indicates that cementation (ooze-chalk-limestone) may be important in post-depositional changes affecting magnetostatic grain interaction.
Resumo:
Long-length ultrafine-grained (UFG) Ti rods are produced by equal-channel angular pressing via the conform scheme (ECAP-C) at 200 °C, which is followed by drawing at 200 °C. The evolution of microstructure, macrotexture, and mechanical properties (yield strength, ultimate tensile strength, failure stress, uniform elongation, elongation to failure) of pure Ti during this thermo-mechanical processing is studied. Special attention is also paid to the effect of microstructure on the mechanical behavior of the material after macrolocalization of plastic flow. The number of ECAP-C passes varies in the range of 1–10. The microstructure is more refined with increasing number of ECAP-C passes. Formation of homogeneous microstructure with a grain/subgrain size of 200 nm and its saturation after 6 ECAP-C passes are observed. Strength properties increase with increasing number of ECAP passes and saturate after 6 ECAP-C passes to a yield strength of 973 MPa, an ultimate tensile strength of 1035 MPa, and a true failure stress of 1400 MPa (from 625, 750, and 1150 MPa in the as-received condition). The true strain at failure failure decreases after ECAP-C processing. The reduction of area and true strain to failure values do not decrease after ECAP-C processing. The sample after 6 ECAP-C passes is subjected to drawing at 200¯C resulting in reduction of a grain/subgrain size to 150 nm, formation of (10 1¯0) fiber texture with respect to the rod axis, and further increase of the yield strength up to 1190 MPa, the ultimate tensile strength up to 1230 MPa and the true failure stress up to 1600 MPa. It is demonstrated that UFG CP Ti has low resistance to macrolocalization of plastic deformation and high resistance to crack formation after necking.
Resumo:
Magnesium alloys have been of growing interest to various engineering applications, such as the automobile, aerospace, communication and computer industries due to their low density, high specific strength, good machineability and availability as compared with other structural materials. However, most Mg alloys suffer from poor plasticity due to their Hexagonal Close Packed structure. Grain refinement has been proved to be an effective method to enhance the strength and alter the ductility of the materials. Several methods have been proposed to produce materials with nanocrystalline grain structures. So far, most of the research work on nanocrystalline materials has been carried out on Face-Centered Cubic and Body-Centered Cubic metals. However, there has been little investigation of nanocrystalline Mg alloys. In this study, bulk coarse-grained and nanocrystalline Mg alloys were fabricated by a mechanical alloying method. The mixed powder of Mg chips and Al powder was mechanically milled under argon atmosphere for different durations of 0 hours (MA0), 10 hours (MA10), 20 hours (MA20), 30 hours (MA30) and 40 hours (MA40), followed by compaction and sintering. Then the sintered billets were hot-extruded into metallic rods with a 7 mm diameter. The obtained Mg alloys have a nominal composition of Mg–5wt% Al, with grain sizes ranging from 13 μm down to 50 nm, depending on the milling durations. The microstructure characterization and evolution after deformation were carried out by means of Optical microscopy, X-Ray Diffraction, Scanning Electron Microscopy, Transmission Electron Microscopy, Scanning Probe Microscopy and Neutron Diffraction techniques. Nanoindentaion, compression and micro-compression tests on micro-pillars were used to study the size effects on the mechanical behaviour of the Mg alloys. Two kinds of size effects on the mechanical behaviours and deformation mechanisms were investigated: grain size effect and sample size effect. The nanoindentation tests were composed of constant strain rate, constant loading rate and indentation creep tests. The normally reported indentation size effect in single crystal and coarse-grained crystals was observed in both the coarse-grained and nanocrystalline Mg alloys. Since the indentation size effect is correlated to the Geometrically Necessary Dislocations under the indenter to accommodate the plastic deformation, the good agreement between the experimental results and the Indentation Size Effect model indicated that, in the current nanocrystalline MA20 and MA30, the dislocation plasticity was still the dominant deformation mechanism. Significant hardness enhancement with decreasing grain size, down to 58 nm, was found in the nanocrystalline Mg alloys. Further reduction of grain size would lead to a drop in the hardness values. The failure of grain refinement strengthening with the relatively high strain rate sensitivity of nanocrystalline Mg alloys suggested a change in the deformation mechanism. Indentation creep tests showed that the stress exponent was dependent on the loading rate during the loading section of the indentation, which was related to the dislocation structures before the creep starts. The influence of grain size on the mechanical behaviour and strength of extruded coarse-grained and nanocrystalline Mg alloys were investigated using uniaxial compression tests. The macroscopic response of the Mg alloys transited from strain hardening to strain softening behaviour, with grain size reduced from 13 ìm to 50 nm. The strain hardening was related to the twinning induced hardening and dislocation hardening effect, while the strain softening was attributed to the localized deformation in the nanocrystalline grains. The tension–compression yield asymmetry was noticed in the nanocrystalline region, demonstrating the twinning effect in the ultra-fine-grained and nanocrystalline region. The relationship k tensions < k compression failed in the nanocrystalline Mg alloys; this was attributed to the twofold effect of grain size on twinning. The nanocrystalline Mg alloys were found to exhibit increased strain rate sensitivity with decreasing grain size, with strain rate ranging from 0.0001/s to 0.01/s. Strain rate sensitivity of coarse-grained MA0 was increased by more than 10 times in MA40. The Hall-Petch relationship broke down at a critical grain size in the nanocrystalline region. The breakdown of the Hall-Petch relationship and the increased strain rate sensitivity were due to the localized dislocation activities (generalization and annihilation at grain boundaries) and the more significant contribution from grain boundary mediated mechanisms. In the micro-compression tests, the sample size effects on the mechanical behaviours were studied on MA0, MA20 and MA40 micro-pillars. In contrast to the bulk samples under compression, the stress-strain curves of MA0 and MA20 micro-pillars were characterized with a number of discrete strain burst events separated by nearly elastic strain segments. Unlike MA0 and MA20, the stress-strain curves of MA40 micro-pillars were smooth, without obvious strain bursts. The deformation mechanisms of the MA0 and MA20 micro-pillars under micro-compression tests were considered to be initially dominated by deformation twinning, followed by dislocation mechanisms. For MA40 pillars, the deformation mechanisms were believed to be localized dislocation activities and grain boundary related mechanisms. The strain hardening behaviours of the micro-pillars suggested that the grain boundaries in the nanocrystalline micro-pillars would reduce the source (nucleation sources for twins/dislocations) starvation hardening effect. The power law relationship of the yield strength on pillar dimensions in MA0, MA20 supported the fact that the twinning mechanism was correlated to the pre-existing defects, which can promote the nucleation of the twins. Then, we provided a latitudinal comparison of the results and conclusions derived from the different techniques used for testing the coarse-grained and nanocrystalline Mg alloy; this helps to better understand the deformation mechanisms of the Mg alloys as a whole. At the end, we summarized the thesis and highlighted the conclusions, contributions, innovations and outcomes of the research. Finally, it outlined recommendations for future work.
Resumo:
Rapidly solidified Al–Cr alloys up to 20 at. % Cr were studied to delineate the extent of crystalline and quasicrystalline phase formation in these alloys in comparison with as-cast alloys by using transmission electron microscopy and x-ray diffraction technique. The icosahedral quasicrystals are observed from 7 to 15 at. % Cr alloys, while equilibrium ?–Al11Cr2 phase is completely absent. Both rapid solidification and subsequent thermal decomposition studies indicate that the main competing phase is ?–Al2Cr up to 15 at. % Cr. Beyond this composition ?–Al4Cr is the dominant phase together with a small amount of ?4–Al7Cr3. We have shown that the electron diffraction patterns of Al–Cr quasicrystals are often associated with a diffuse intensity distribution, indicative of short-range order. The change in quasilattice constant with composition suggests the existence of structural vacancies. Further, a sudden change from coarse to ultrafine quasicrystalline grain structure in Al-7 at. % Cr alloy points to a change in nucleation mechanism from heterogeneous to homogeneous mode during the rapid solidification.
Resumo:
Aiming to develop high mechanical strength and toughness by tuning ultrafine lamellar spacing of magnetic eutectic alloys, we report the mechanical and magnetic properties of the binary eutectic alloys Co90.5Zr9.5 and Fe90.2Zr9.8, as well as the pseudo-binary eutectic alloys Co82.4Fe8Zr9.6, Co78Fe12.4Zr9.6 and Co49.2Fe49.2Zr9.6 developed by suction-casting. The lower lamellar spacing around 100 nm of the eutectics Co49.2Fe49.2Zr9.6 yields a high hardness of 713(+/- 20) VHN. Magnetic measurements reveal high magnetic moment of 1.92 mu B (at 5 K) and 1.82 mu B (at 300 K) per formula unit for this composition. The magnetization vs. applied field data at 5 K show a directional preference to some extent and therefore smaller non-collinear magnetization behavior compared to Co11Zr2 reported in the literature due to exchange frustration and transverse spin freezing owing to the presence of smaller Zr content. The decay of magnetization as a function of temperature along the easy axis of magnetization of all the eutectic compositions can be described fairly well by the spin wave excitation equation Delta M/M(0) = BT3/2 + CT5/2. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Pure (W0.4Al0.6)C powder of about 1 mu m in diameter was sintered by the high pressure sintering (HPS) process without the addition of any binder phase. The microstructure, Vickers micro hardness and density versus the sintering time and temperature are well described. The most suitable sintering condition under pressure of 4.5 GPa is 1873 K for 8 min. Under this sintering condition, the hardness can reach 2295 kg mm(-2) and the relative density can reach 98.6%.