916 resultados para tyrosine kinase inhibitor (TKI)
Resumo:
The ruthenium(II)-cymene complexes [Ru(eta(6)-cymene)(bha)Cl] with substituted halogenobenzohydroxamato (bha) ligands (substituents = 4-F, 4-Cl, 4-Br, 2,4-F-2, 3,4-F-2, 2,5-F-2, 2,6-F-2) have been synthesized and characterized by elemental analysis, IR, H-1 NMR, C-13 NMR, cyclic voltammetry and controlled-potential electrolysis, and density functional theory (DFT) studies. The compositions of their frontier molecular orbitals (MOs) were established by DFT calculations, and the oxidation and reduction potentials are shown to follow the orders of the estimated vertical ionization potential and electron affinity, respectively. The electrochemical E-L Lever parameter is estimated for the first time for the various bha ligands, which can thus be ordered according to their electron-donor character. All complexes exhibit very strong protein tyrosine kinase (PTK) inhibitory activity, even much higher than that of genistein, the clinically used PTK inhibitory drug. The complex containing the 2,4-difluorobenzohydroxamato ligand is the most active one, and the dependences of the PTK activity of the complexes and of their redox potentials on the ring substituents are discussed. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
ADP-ribosylation factor-1 (ARF1) est une petite GTPase principalement connue pour son rôle dans la formation de vésicules au niveau de l’appareil de Golgi. Récemment, dans des cellules de cancer du sein, nous avons démontré qu’ARF1 est aussi un médiateur important de la signalisation du récepteur du facteur de croissance épidermique (EGFR) contrôlant la prolifération, la migration et l'invasion cellulaire. Cependant, le mécanisme par lequel l’EGFR active la GTPase ainsi que le rôle de cette dernière dans la régulation de la fonction du récepteur demeure inconnue. Dans cette thèse, nous avions comme objectifs de définir le mécanisme d'activation de ARF1 dans les cellules de cancer du sein hautement invasif et démontrer que l’activation de cette isoforme de ARF joue un rôle essentiel dans la résistance de ces cellules aux inhibiteurs de l'EGFR. Nos études démontrent que les protéines d’adaptatrices Grb2 et p66Shc jouent un rôle important dans l'activation de ARF1. Alors que Grb2 favorise le recrutement d’ARF1 à l'EGFR ainsi que l'activation de cette petite GTPase, p66Shc inhibe le recrutement du complexe Grb2-ARF1 au récepteur et donc contribue à limiter l’activation d’ARF1. De plus, nous démontrons que ARF1 favorise la résistance aux inhibiteurs des tyrosines kinases dans les cellules de cancer du sein hautement invasif. En effet, une diminution de l’expression de ARF1 a augmenté la sensibilité descellules aux inhibiteurs de l'EGFR. Nous montrons également que de hauts niveaux de ARF1 contribuent à la résistance des cellules à ces médicaments en améliorant la survie et les signaux prolifératifs à travers ERK1/2, Src et AKT, tout en bloquant les voies apoptotiques (p38MAPK et JNK). Enfin, nous mettons en évidence le rôle de la protéine ARF1 dans l’apoptose en réponse aux traitements des inhibiteurs de l’EGFR. Nos résultats indiquent que la dépletion d’ARF1 promeut la mort cellulaire induite par gefitinib, en augmentant l'expression de facteurs pro-apoptotiques (p66shc, Bax), en altérant le potentiel de la membrane mitochondriale et la libération du cytochrome C. Ensemble, nos résultats délimitent un nouveau mécanisme d'activation de ARF1 dans les cellules du cancer du sein hautement invasif et impliquent l’activité d’ARF1 comme un médiateur important de la résistance aux inhibiteurs EGFR.
Resumo:
Inhibition of ErbB2 (HER2) with monoclonal antibodies, an effective therapy in some forms of breast cancer, is associated with cardiotoxicity, the pathophysiology of which is poorly understood. Recent data suggest, that dual inhibition of ErbB1 (EGFR) and ErbB2 signaling is more efficient in cancer therapy, however, cardiac safety of this therapeutic approach is unknown. We therefore tested an ErbB1-(CGP059326) and an ErbB1/ErbB2-(PKI166) tyrosine kinase inhibitor in an in-vitro system of adult rat ventricular cardiomyocytes and assessed their effects on 1. cell viability, 2. myofibrillar structure, 3. contractile function, and 4. MAPK- and Akt-signaling alone or in combination with Doxorubicin. Neither CGP nor PKI induced cardiomyocyte necrosis or apoptosis. PKI but not CGP caused myofibrillar structural damage that was additive to that induced by Doxorubicin at clinically relevant doses. These changes were associated with an inhibition of excitation-contraction coupling. PKI but not CGP decreased p-Erk1/2, suggesting a role for this MAP-kinase signaling pathway in the maintenance of myofibrils. These data indicate that the ErbB2 signaling pathway is critical for the maintenance of myofibrillar structure and function. Clinical studies using ErbB2-targeted inhibitors for the treatment of cancer should be designed to include careful monitoring for cardiac dysfunction.
Resumo:
Integrin receptors play a central role in the biology of lymphocytes, mediating crucial functional aspects of these cells, including adhesion, activation, polarization, migration, and signaling. Here we report that induction of activation of the β2-integrin lymphocyte function-associated antigen 1 (LFA-1) in T lymphocytes with divalent cations, phorbol esters, or stimulatory antibodies is followed by a dramatic polarization, resulting in a characteristic elongated morphology of the cells and the arrest of migrating lymphoblasts. This cellular polarization was prevented by treatment of cells with the specific tyrosine kinase inhibitor genistein. Furthermore, the interaction of the activated integrin LFA-1 with its ligand intercellular adhesion molecule 1 induced the activation of the cytoplasmic tyrosine kinases focal adhesion kinase (FAK) and proline-rich tyrosine kinase 2 (PYK-2). FAK activation reached a maximum after 45 min of stimulation; in contrast, PYK-2 activation peaked at 30 min, declining after 60 min. Upon polarization of lymphoblasts, FAK and PYK-2 redistributed from a diffuse localization in the cytoplasm to a region close to the microtubule-organizing center in these cells. FAK and PYK-2 activation was blocked when lymphoblasts were pretreated with actin and tubulin cytoskeleton-interfering agents, indicating its cytoskeletal dependence. Our results demonstrate that interaction of the β2-integrin LFA-1 with its ligand intercellular adhesion molecule 1 induces remodeling of T lymphocyte morphology and activation and redistribution of the cytoplasmic tyrosine kinases FAK and PYK-2.
Resumo:
CD95/Fas/APO-1 mediated apoptosis is an important mechanism in the regulation of the immune response. Here, we show that CD95 receptor triggering activates an outwardly rectifying chloride channel (ORCC) in Jurkat T lymphocytes. Ceramide, a lipid metabolite synthesized upon CD95 receptor triggering, also induces activation of ORCC in cell-attached patch clamp experiments. Activation is mediated by Src-like tyrosine kinases, because it is abolished by the tyrosine kinase inhibitor herbimycin A or by genetic deficiency of p56lck. In vitro incubation of excised patches with purified p56lck results in activation of ORCC, which is partially reversed upon addition of anti-phosphotyrosine antibody. Inhibition of ORCC by four different drugs correlates with a 30–65% inhibition of apoptosis. Intracellular acidification observed upon CD95 triggering is abolished by inhibition of either ORCC or p56lck. The results suggest that tyrosine kinase-mediated activation of ORCC may play a role in CD95-induced cell death in T lymphocytes.
Resumo:
ADP-ribosylation factor-1 (ARF1) est une petite GTPase principalement connue pour son rôle dans la formation de vésicules au niveau de l’appareil de Golgi. Récemment, dans des cellules de cancer du sein, nous avons démontré qu’ARF1 est aussi un médiateur important de la signalisation du récepteur du facteur de croissance épidermique (EGFR) contrôlant la prolifération, la migration et l'invasion cellulaire. Cependant, le mécanisme par lequel l’EGFR active la GTPase ainsi que le rôle de cette dernière dans la régulation de la fonction du récepteur demeure inconnue. Dans cette thèse, nous avions comme objectifs de définir le mécanisme d'activation de ARF1 dans les cellules de cancer du sein hautement invasif et démontrer que l’activation de cette isoforme de ARF joue un rôle essentiel dans la résistance de ces cellules aux inhibiteurs de l'EGFR. Nos études démontrent que les protéines d’adaptatrices Grb2 et p66Shc jouent un rôle important dans l'activation de ARF1. Alors que Grb2 favorise le recrutement d’ARF1 à l'EGFR ainsi que l'activation de cette petite GTPase, p66Shc inhibe le recrutement du complexe Grb2-ARF1 au récepteur et donc contribue à limiter l’activation d’ARF1. De plus, nous démontrons que ARF1 favorise la résistance aux inhibiteurs des tyrosines kinases dans les cellules de cancer du sein hautement invasif. En effet, une diminution de l’expression de ARF1 a augmenté la sensibilité descellules aux inhibiteurs de l'EGFR. Nous montrons également que de hauts niveaux de ARF1 contribuent à la résistance des cellules à ces médicaments en améliorant la survie et les signaux prolifératifs à travers ERK1/2, Src et AKT, tout en bloquant les voies apoptotiques (p38MAPK et JNK). Enfin, nous mettons en évidence le rôle de la protéine ARF1 dans l’apoptose en réponse aux traitements des inhibiteurs de l’EGFR. Nos résultats indiquent que la dépletion d’ARF1 promeut la mort cellulaire induite par gefitinib, en augmentant l'expression de facteurs pro-apoptotiques (p66shc, Bax), en altérant le potentiel de la membrane mitochondriale et la libération du cytochrome C. Ensemble, nos résultats délimitent un nouveau mécanisme d'activation de ARF1 dans les cellules du cancer du sein hautement invasif et impliquent l’activité d’ARF1 comme un médiateur important de la résistance aux inhibiteurs EGFR.
Resumo:
Purpose: In non-small-cell lung cancer (NSCLC), the epidermal growth factor receptor (EGFR) and cyclooxygenase-2 (COX-2) play major roles in tumorigenesis. This phase I/II study evaluated combined therapy with the EGFR tyrosine kinase inhibitor (TKI) gefitinib and the COX-2 inhibitor rofecoxib in platinum-pretreated, relapsed, metastatic NSCLC (n = 45). Patients and Methods: Gefitinib 250 mg/d was combined with rofecoxib (dose escalated from 12.5 to 25 to 50 mg/d through three cohorts, each n = 6). Because the rofecoxib maximum-tolerated dose was not reached, the 50 mg/d cohort was expanded for efficacy evaluation (n = 33). Results: Among the 42 assessable patients, there was one complete response (CR) and two partial responses (PRs) and 12 patients with stable disease (SD); disease control rate was 35.7% (95% CI, 21.6% to 52.0%). Median time to tumor progression was 55 days (95% CI, 47 to 70 days), and median survival was 144 days (95% CI, 103 to 190 days). In a pilot study, matrix-assisted laser desorption/ionization (MALDI) proteomics analysis of baseline serum samples could distinguish patients with an objective response from those with SD or progressive disease (PD), and those with disease control (CR, PR, and SD) from those with PD. The regimen was generally well tolerated, with predictable toxicities including skin rash and diarrhea. Conclusion: Gefitinib combined with rofecoxib provided disease control equivalent to that expected with single-agent gefitinib and was generally well tolerated. Baseline serum proteomics may help identify those patients most likely to benefit from EGFR TKIs. © 2007 by American Society of Clinical Oncology.
Resumo:
The majority of non-small cell lung cancer (NSCLC) patients present with advanced disease and with a 5 year survival rate of <15% for these patients, treatment outcomes are considered extremely disappointing. Standard chemotherapy regimens provide some improvement to ~40% of patients. However, intrinsic and acquired chemoresistance are a significant problem and hinder sustained long term benefits of such treatments. Advances in proteomic and genomic profiling have increased our understanding of the aberrant molecular mechanisms that are driving an individual's tumour. The increased sensitivity of these technologies has enabled molecular profiling at the stage of initial biopsy thus paving the way for a more personalised approach to the treatment of cancer patients. Improvements in diagnostics together with a wave of new targeted small molecule inhibitors and monoclonal antibodies have revolutionised the treatment of cancer. To date there are essentially three targeted agents approved for clinical use in NSCLC. The tyrosine kinase inhibitor (TKI) erlotinib, which targets the epidermal growth factor receptor (EGFR) TK domain, has proven to be an effective treatment strategy in patients who harbour activating mutations in the EGFR TK domain. Bevacizumab a monoclonal antibody targeting the vascular endothelial growth factor (VEGF) can improve survival, response rates, and progression-free survival when used in combination with chemotherapy. Crizotinib, a small-molecule drug, inhibits the tyrosine kinase activity of the echinoderm microtubule-associated protein-like 4 anaplastic lymphoma kinase (EML4-ALK) fusion protein, resulting in decreased tumour cell growth, migration, and invasiveness in patients with locally advanced or metastatic NSCLC. The clinical relevance of several other targeted agents are under investigation in distinct molecular subsets of patients with key "driver" mutations including: KRAS, HER2, BRAF, MET, PIK3CA, AKT1,MAP2K1, ROS1 and RET. Often several pathways are activated simultaneously and crosstalk between pathways allows tumour cells to escape the inhibition of a single targeted agent. This chapter will explore the clinical development of currently available targeted therapies for NSCLC as well as those in clinical trials and will examine the synergy between cytotoxic therapies.
Resumo:
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL/Apo-2L) has emerged as a promising anticancer agent. However, resistance to TRAIL is likely to be a major problem, and sensitization of cancer cells to TRAIL may therefore be an important anticancer strategy. In this study, we examined the effect of the epidermal growth factor receptor (EGFR)tyrosine kinase inhibitor (TKI) gefitinib and a human epidermal receptor 2 (HER2)-TKI (M578440) on the sensitivity of human colorectal cancer (CRC) cell lines to recombinant human TRAIL (rhTRAIL). A synergistic interaction between rhTRAIL and gefitinib and rhTRAIL and M578440 was observed in both rhTRAIL-sensitive and resistant CRC cells. This synergy correlated with an increase in EGFR and HER2 activation after rhTRAIL treatment. Furthermore, treatment of CRC cells with rhTRAIL resulted in activation of the Src family kinases (SFK). Importantly, we found that rhTRAIL treatment induced shedding of transforming growth factor-alpha (TGF-alpha) that was dependent on SFK activity and the protease ADAM-17. Moreover, this shedding of TGF-alpha was critical for rhTRAIL-induced activation of EGFR. In support of this, SFK inhibitors and small interfering RNAs targeting ADAM-17 and TGF-alpha also sensitized CRC cells to rhTRAIL-mediated apoptosis. Taken together, our findings indicate that both rhTRAIL-sensitive and resistant CRC cells respond to rhTRAIL treatment by activating an EGFR/HER2-mediated survival response and that these cells can be sensitized to rhTRAIL using EGFR/HER2-targeted therapies. Furthermore, this acute response to rhTRAIL is regulated by SFK-mediated and ADAM-17-mediated shedding of TGF-alpha, such that targeting SFKs or inhibiting ADAM-17, in combination with rhTRAIL, may enhance the response of CRC tumors to rhTRAIL. [Cancer Res 2008;68(20):8312-21]
Resumo:
Molecular testing for the BCR-ABL1 fusion gene by real time quantitative polymerase chain reaction (RT-qPCR) is the most sensitive routine approach for monitoring the response to therapy of patients with chronic myeloid leukaemia. In the context of tyrosine kinase inhibitor (TKI) therapy, the technique is most appropriate for patients who have achieved complete cytogenetic remission and can be used to define specific therapeutic milestones. To achieve this effectively, standardization of the laboratory procedures and the interpretation of results are essential. We present here consensus best practice guidelines for RT-qPCR testing, data interpretation and reporting that have been drawn up and agreed by a consortium of 21 testing laboratories in the United Kingdom and Ireland in accordance with the procedures of the UK Clinical Molecular Genetics Society.
Resumo:
In the face of competing first-line treatment options for CML, early prediction of prognosis on imatinib is desirable to assure favorable survival or otherwise consider the use of a second-generation tyrosine kinase inhibitor (TKI). A total of 1303 newly diagnosed imatinib-treated patients (pts) were investigated to correlate molecular and cytogenetic response at 3 and 6 months with progression-free and overall survival (PFS, OS). The persistence of BCR-ABL transcript levels >10% according to the international scale (BCR-ABL(IS)) at 3 months separated a high-risk group (28% of pts; 5-year OS: 87%) from a group with >1-10% BCR-ABL(IS) (41% of pts; 5-year OS: 94%; P=0.012) and from a group with 1% BCR-ABL(IS) (31% of pts; 5-year OS: 97%; P=0.004). Cytogenetics identified high-risk pts by >35% Philadelphia chromosome-positive metaphases (Ph+, 27% of pts; 5-year OS: 87%) compared with 35% Ph+ (73% of pts; 5-year OS: 95%; P=0.036). At 6 months, >1% BCR-ABL(IS) (37% of pts; 5-year OS: 89%) was associated with inferior survival compared with 1% (63% of pts; 5-year OS: 97%; P<0.001) and correspondingly >0% Ph+ (34% of pts; 5-year OS: 91%) compared with 0% Ph+ (66% of pts; 5-year OS: 97%; P=0.015). Treatment optimization is recommended for pts missing these landmarks.
Resumo:
Several different acquired resistance mechanisms of EGFR mutant lung adenocarcinoma to EGFR-tyrosine kinase inhibitor (TKI) therapy have been described, most recently transformation to small cell lung carcinoma (SCLC). We describe the case of a 46-year-old female with relapsed EGFR exon 19 deletion lung adenocarcinoma treated with erlotinib, and on resistance, cisplatin-pemetrexed. Liver rebiopsy identified an afatinib-resistant combined SCLC and non-small cell carcinoma with neuroendocrine morphology, retaining the EGFR exon 19 deletion. This case highlights acquired EGFR-TKI resistance through transformation to the high-grade neuroendocrine carcinoma spectrum and that that such transformation may not be evident at time of progression on TKI therapy.
Resumo:
Two approaches were utilized to investigate the role of pp60c-src activation in growth control of model colon tumor cell lines. The first approach involved analysis of pp60c-src activity in response to growth factor treatment to determine if transient activation of the protein was associated with ligand induced mitogenic signal transduction as occurs in non-colonic cell types. Activation of pp60c-src was detected using colon tumor cell lysates after treatment with platelet derived growth factor (PDGF). Activation of pp60c-src was also detected in response to epidermal growth factor (EGF) treatment using cellular lysates and intact cells. In contrast, down-regulation of purified pp60c-src occurred after incubation with EGF-treated EGFr immune complexes in vitro suggesting additional cellular events were potentially required for the stimulatory response observed in intact cells. The results demonstrated activation of pp60c-src in colon tumor cells in response to PDGF and EGF which is consistent with the role of the protein in mitogenic signal transduction in non-colonic cell types.^ The second approach used to study the role of pp60c-src activation in colonic cell growth control focused on analysis of the role of constitutive activation of the protein, which occurs in approximately 80% of colon tumors and cell lines, in growth control. These studies involved analysis of the effects of the tyrosine kinase specific inhibitor Herbimycin A (HA) on monolayer growth and pp60c-src enzymatic activity using model colon tumor cell lines. HA induced dose-dependent growth inhibition of all colon tumor cell lines examined possessing elevated pp60c-src activity. In HT29 cells the dose-dependent growth inhibition induced by HA correlated with dose-dependent pp60c-src inactivation. Inactivation of pp60c-src was shown to be an early event in response to treatment with HA which preceded induction of HT29 colon tumor cell growth inhibition. The growth effects of HA towards the colon tumor cells examined did not appear to be associated with induction of differentiation or a cytotoxic mechanism of action as changes in morphology were not detected in treated cells and growth inhibition (and pp60c-src inactivation) were reversible upon release from treatment with the compound. The results suggested the constitutive activation of pp60c-src functioned as a proliferative signal in colon tumor cells. Correlation between pp60c-src inactivation and growth inhibition was also observed using HA chemical derivatives confirming the role of tyrosine kinase inactivation by these compounds in inhibition of mitogenic signalling. In contrast, in AS15 cells possessing specific antisense mRNA mediated inactivation of pp60c-src, HA-induced inactivation of the related pp62c-yes tyrosine kinase, which is also activated during colon tumor progression, was not associated with induction of monolayer growth inhibition. These results suggested a function for the constitutively activated pp62c-yes protein in colon tumor cell proliferation which was different from that of activated pp60c-src. (Abstract shortened by UMI.) ^
Resumo:
Bruton’s tyrosine kinase (Btk) plays pivotal roles in mast cell activation as well as in B cell development. Btk mutations lead to severe impairments in proinflammatory cytokine production induced by cross-linking of high-affinity IgE receptor on mast cells. By using an in vitro assay to measure the activity that blocks the interaction between protein kinase C and the pleckstrin homology domain of Btk, terreic acid (TA) was identified and characterized in this study. This quinone epoxide specifically inhibited the enzymatic activity of Btk in mast cells and cell-free assays. TA faithfully recapitulated the phenotypic defects of btk mutant mast cells in high-affinity IgE receptor-stimulated wild-type mast cells without affecting the enzymatic activities and expressions of many other signaling molecules, including those of protein kinase C. Therefore, this study confirmed the important roles of Btk in mast cell functions and showed the usefulness of TA in probing into the functions of Btk in mast cells and other immune cell systems. Another insight obtained from this study is that the screening method used to identify TA is a useful approach to finding more efficacious Btk inhibitors.