968 resultados para two-magnon bound states


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Dirac equation is solved for a pseudoscalar Coulomb potential in a two-dimensional world. An infinite sequence of bounded solutions are obtained. These results are in sharp contrast with those ones obtained in 3 + 1 dimensions where no bound-state solutions are found. Next the general two-dimensional problem for pseudoscalar power-law potentials is addressed consenting us to conclude that a nonsingular potential leads to bounded solutions. The behaviour of the upper and lower components of the Dirac spinor for a confining linear potential nonconserving- as well as conserving-parity, even if the potential is unbounded from below, is discussed in some detail. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The first step toward the application of an effective non partial wave (PW) numerical approach to few-body atomic bound states has been taken. The two-body transition amplitude which appears in the kernel of three-dimensional Faddeev-Yakubovsky integral equations is calculated as function of two-body Jacobi momentum vectors, i.e. as a function of the magnitude of initial and final momentum vectors and the angle between them. For numerical calculation the realistic interatomic interactions HFDHE2, HFD-B, LM2M2 and TTY are used. The angular and momentum dependence of the fully off-shell transition amplitude is studied at negative energies. It has been numerically shown that, similar to the nuclear case, the transition amplitude exhibits a characteristic angular behavior in the vicinity of He-4 dimer pole.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a nonadiabatic hyperspherical calculation of the highly excited and low lying doubly excited states of the barium atom using effective potentials for the two optically active electrons' interactions. Within the hyperspherical adiabatic approach the investigation of the spectra is performed with potential curves and nonadiabatic couplings of a unique radial variable, which allows clear identification of the states. The convergence of energy is obtained within well established bound limits, and the precision is comparable to accurate configuration interaction calculations. A very good agreement with experimental results is obtained with only few nonadiabatic couplings. (C) 2004 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Dirac equation is exactly solved for a pseudoscalar linear plus Coulomb-like potential in a two-dimensional world. This sort of potential gives rise to an effective quadratic plus inversely quadratic potential in a Sturm-Liouville problem, regardless the sign of the parameter of the linear potential, in sharp contrast with the Schrodinger case. The generalized Dirac oscillator already analyzed in a previous work is obtained as a particular case. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is shown that the appearance of a fixed-point singularity in the kernel of the two-electron Cooper problem is responsible for the formation of the Cooper pair for an arbitrarily weak attractive interaction between two electrons. This singularity is absent in the problem of three and few superconducting electrons at zero temperature on the full Fermi sea. Consequently, such three- and few-electron systems on the full Fermi sea do not form Cooper-type bound states for an arbitrarily weak attractive pair interaction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider general d-dimensional lattice ferromagnetic spin systems with nearest neighbor interactions in the high temperature region ('beta' << 1). Each model is characterized by a single site apriori spin distribution taken to be even. We also take the parameter 'alfa' = ('S POT.4') - 3 '(S POT.2') POT.2' > 0, i.e. in the region which we call Gaussian subjugation, where ('S POT.K') denotes the kth moment of the apriori distribution. Associated with the model is a lattice quantum field theory known to contain a particle of asymptotic mass -ln 'beta' and a bound state below the two-particle threshold. We develop a 'beta' analytic perturbation theory for the binding energy of this bound state. As a key ingredient in obtaining our result we show that the Fourier transform of the two-point function is a meromorphic function, with a simple pole, in a suitable complex spectral parameter and the coefficients of its Laurent expansion are analytic in 'beta'.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bound and resonance states of HO2 are calculated quantum mechanically using both the Lanczos homogeneous filter diagonalization method and the real Chebyshev filter diagonalization method for nonzero total angular momentum J=6 and 10, using a parallel computing strategy. For bound states, agreement between the two methods is quite satisfactory; for resonances, while the energies are in good agreement, the widths are in general agreement. The quantum nonzero-J specific unimolecular dissociation rates for HO2 are also calculated. (C) 2004 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bound and resonance states of HO2 have been calculated by both the complex Lanczos homogeneous filter diagonalisation (LHFD) method(1,2) and the real Chebyshev filter diagonalisation method(3,4) for non-zero total angular momentum J = 4 and 5. For bound states, the agreement between the two methods is quite satisfactory; for resonances while the energies are in good agreement, the widths are only in general agreement. The relative performances of the two iterative FD methods have also been discussed in terms of efficiency as well as convergence behaviour for such a computationally challenging problem. A helicity quantum number Ohm assignment (within the helicity conserving approximation) is performed and the results indicate that Coriolis coupling becomes more important as J increases and the helicity conserving approximation is not a good one for the HO2 resonance states.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We analyze molecular bound states of atomic quantum gases near a Feshbach resonance. A simple, renormalizable field theoretic model is shown to have exact solutions in the two-body sector, whose binding energy agrees well with observed experimental results in both Bosonic and Fermionic cases. These solutions, which interpolate between BEC and BCS theories, also provide a more general variational ansatz for resonant superfluidity and related problems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We analyze the stochastic creation of a single bound state (BS) in a random potential with a compact support. We study both the Hermitian Schrödinger equation and non-Hermitian Zakharov-Shabat systems. These problems are of special interest in the inverse scattering method for Korteveg–de-Vries and the nonlinear Schrödinger equations since soliton solutions of these two equations correspond to the BSs of the two aforementioned linear eigenvalue problems. Analytical expressions for the average width of the potential required for the creation of the first BS are given in the approximation of delta-correlated Gaussian potential and additionally different scenarios of eigenvalue creation are discussed for the non-Hermitian case.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ON Saturday February 16, 1980 total solar eclipse Occurred for a period of 2-3 min in a belt of 135 km during the eclipse from 14'17 to 17'00 hrs across peninsular India. The city of Bangalore, being just outside this belt, had witnessed 92% eclipse for about 2. 1/2 min at the peak period of 15.44 hr at which time a temperature drop of 2' C and a considerable dimness of the light were experienced. In view of the interest in our laboratory on biochemical adaptation under conditions of environmental stress, we designed an experiment to study the possible changes in enzyme activities during the solar eclipse on February 16, 1980.