989 resultados para turbine inlet temperature


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Recent studies have evaluated closed-loop supercritical carbon dioxide (s-CO2) Brayton cycles to be a higher energy density system in comparison to conventional superheated steam Rankine systems. At turbine inlet conditions of 923K and 25 MPa, high thermal efficiency (similar to 50%) can be achieved. Achieving these high efficiencies will make concentrating solar power (CSP) technologies a competitive alternative to current power generation methods. To incorporate a s-CO2 Brayton power cycle in a solar power tower system, the development of a solar receiver capable of providing an outlet temperature of 923 K (at 25 MPa) is necessary. The s-CO2 will need to increase in temperature by similar to 200 K as it passes through the solar receiver to satisfy the temperature requirements of a s-CO2 Brayton cycle with recuperation and recompression. In this study, an optical-thermal-fluid model was developed to design and evaluate a tubular receiver that will receive a heat input similar to 2 MWth from a heliostat field. The ray-tracing tool SolTrace was used to obtain the heat-flux distribution on the surfaces of the receiver. Computational fluid dynamics (CFD) modeling using the Discrete Ordinates (DO) radiation model was used to predict the temperature distribution and the resulting receiver efficiency. The effect of flow parameters, receiver geometry and radiation absorption by s-CO2 were studied. The receiver surface temperatures were found to be within the safe operational limit while exhibiting a receiver efficiency of similar to 85%.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Abstract. Mixed flow turbines can offer improvements over typical radial turbines used in automotive turbochargers, with respect to transient performance and low velocity ratio efficiency. Turbine rotor mass dominates the rotating inertia of the turbocharger’s rotating assembly, and any reductions of mass in the outer radii of the wheel, including the rotor back-disk, can significantly reduce this inertia and improve the acceleration of the assembly. Off-design, low velocity ratio conditions are typified by highly tangential flow at the rotor inlet and a non-zero inlet blade angle is desirable for such operating conditions. This is achievable in a Mixed Flow Turbine without increasing bending stresses within the rotor blade, which is beneficial in high speed and high inlet temperature turbine designs.
This study considers the meridional geometry of Mixed Flow Turbines using a multi-disciplinary study to assess both the structural and aerodynamic performance of each rotor, incorporating both CFD and FEA. Variations of rotor trailing edge were investigated at different operating conditions representing both on- and off-design operation within the constraints of existing hardware geometries. In all cases, the performance is benchmarked against an existing state-of-the-art radial turbocharger turbine with consideration of rotor inertia and its benefit for engine transient performance. The results indicate the influence of these parameters and this report details their benefits with respect to turbocharging a downsized, automotive engine.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Heat exchanger design is a complex task involving the selection of a large number of interdependent design parameters. There are no established general techniques for optimizing the design, though a few earlier attempts provide computer software based on gradient methods, case study methods, etc. The authors felt that it would be useful to determine the nature of the optimal and near-optimal feasible designs to devise an optimization technique. Therefore, in this article they have obtained a large number of feasible designs of shell and tube heat exchangers, intended to perform a given heat duty, by an exhaustive search method. They have studied how their capital and operating costs varied. The study reveals several interesting aspects of the dependence of capital and total costs on various design parameters. The authors considered a typical shell and tube heat exchanger used in an oil refinery. Its heat duty, inlet temperature and other details are given.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Turbine inlet pressures of similar to 300 bar in case of CO2 based cycles call for redesigning the cycle in such a way that the optimum high side pressures are restricted to the discharge pressure limits imposed by currently available commercial compressors (similar to 150 bar) for distributed power generation. This leads to a cycle which is a combination of a transcritical condensing and a subcritical cycle with an intercooler and a bifurcation system in it. Using a realistic thermodynamic model, it is predicted that the cycle with the working fluid as a non-flammable mixture of 48.5 % propane and rest CO2 delivers similar to 37.2 % efficiency at 873 K with a high and a low side pressure of 150 and 26 bar respectively. This is in contrast to the best efficiency of similar to 36.1 % offered by a transcritical condensing cycle with the same working fluid at a high side pressure of similar to 300 bar

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Modeling study is performed to reveal the special features of the entrainment of ambient air into subsonic laminar and turbulent argon plasma jets. Two different types of jet flows are considered, i.e., the argon plasma jet is impinging normally upon a flat substrate located in atmospheric air surroundings or is freely issuing into the ambient air. It is found that the existence of the substrate not only changes the plasma temperature, velocity and species concentration distributions in the near-substrate region, but also significantly enhances the mass flow rate of the ambient air entrained into the jet due to the additional contribution to the gas entrainment of the wall jet formed along the substrate surface. The fraction of the additional entrainment of the wall jet in the total entrained-air flow rate is especially high for the laminar impinging plasma jet and for the case with shorter substrate standoff distances. Similarly to the case of cold-gas free jets, the maximum mass flow-rate of ambient gas entrained into the turbulent impinging or free plasma jet is approximately directly proportional to the mass flow rate at the jet inlet. The maximum mass flow-rate of ambient gas entrained into the laminar impinging plasma jet slightly increases with increasing jet-inlet velocity but decreases with increasing jet-inlet temperature.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper describes the detailed validation of a computer model designed to simulate the transient light-off in a two-stroke oxidation catalyst. A plug flow reactor is employed to provide measurements of temperature and gas concentration at various radial and axial locations inside the catalyst. These measurements are recorded at discrete intervals during a transient light-off in which the inlet temperature is increased from ambient to 300oC at rates of up to 6oC/sec. The catalyst formulation used in the flow reactor, and its associated test procedures, are then simulated by the computer and a comparison made between experimental readings and model predictions. The design of the computer model to which this validation exercise relates is described in detail in a separate technical paper. The first section of the paper investigates the warm-up characteristics of the substrate and examines the validity of the heat transfer predictions between the wall and the gas in the absence of chemical reactions. The predictions from a typical single-component CO transient light-off test are discussed in the second section and are compared with experimental data. In particular the effect of the temperature ramp on the light-off curve and reaction zone development is examined. An analysis of the C3H6 conversion is given in the third section while the final section examines the accuracy of the light-off curves which are produced when both CO and C3H6 are present in the feed gas. The analysis shows that the heat and mass transfer calculations provided reliable predictions of the warm-up behaviour and post light-off gas concentration profiles. The self-inhibition and cross-inhibition terms in the global rate expressions were also found to be reasonably reliable although the surface reaction rates required calibration with experimental data.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This report describes the work done creating a computer model of a kombi tank from Consolar. The model was created with Presim/Trnsys and Fittrn and DF were used to identify the parameters. Measurements were carried out and were used to identify the values of the parameters in the model. The identifications were first done for every circuit separately. After that, all parameters are normally identified together using all the measurements. Finally the model should be compared with other measurements, preferable realistic ones. The two last steps have not yet been carried out, because of problems finding a good model for the domestic hot water circuit.The model of the domestic hot water circuit give relatively good results for low flows at 5 l/min, but is not good for higher flows. In the report suggestions for improving the model are given. However, there was not enough time to test this within the project as much time was spent trying to solve problems with the model crashing. Suggestions for improving the model for the domestic circuit are given in chapter 4.4. The improved equations that are to be used in the improved model are given by equation 4.18, 4.19 and 4.22.Also for the boiler circuit and the solar circuit there are improvements that can be done. The model presented here has a few shortcomings, but with some extra work, an improved model can be created. In the attachment (Bilaga 1) is a description of the used model and all the identified parameters.A qualitative assessment of the store was also performed based on the measurements and the modelling carried out. The following summary of this can be given: Hot Water PreparationThe principle for controlling the flow on the primary side seems to work well in order to achieve good stratification. Temperatures in the bottom of the store after a short use of hot water, at a coldwater temperature of 12°C, was around 28-30°C. This was almost independent of the temperature in the store and the DHW-flow.The measured UA-values of the heat exchangers are not very reliable, but indicates that the heat transfer rates are much better than for the Conus 500, and in the same range as for other stores tested at SERC.The function of the mixing valve is not perfect (see diagram 4.3, where Tout1 is the outlet hot water temperature, and Tdhwo and Tdhw1 is the inlet temperature to the hot and cold side of the valve respectively). The outlet temperature varies a lot with different temperatures in the storage and is going down from 61°C to 47°C before the cold port is fully closed. This gives a problem to find a suitable temperature setting and gives also a risk that the auxiliary heating is increased instead of the set temperature of the valve, when the hot water temperature is to low.Collector circuitThe UA-value of the collector heat exchanger is much higher than the value for Conus 500, and in the same range as the heat exchangers in other stores tested at SERC.Boiler circuitThe valve in the boiler circuit is used to supply water from the boiler at two different heights, depending on the temperature of the water. At temperatures from the boiler above 58.2°C, all the water is injected to the upper inlet. At temperatures below 53.9°C all the water is injected to the lower inlet. At 56°C the water flow is equally divided between the two inlets. Detailed studies of the behaviour at the upper inlet shows that better accuracy of the model would have been achieved using three double ports in the model instead of two. The shape of the upper inlet makes turbulence, that could be modelled using two different inlets. Heat lossesThe heat losses per m3 are much smaller for the Solus 1050, than for the Conus 500 Storage. However, they are higher than those for some good stores tested at SERC. The pipes that are penetrating the insulation give air leakage and cold bridges, which could be a major part of the losses from the storage. The identified losses from the bottom of the storage are exceptionally high, but have less importance for the heat losses, due to the lower temperatures in the bottom. High losses from the bottom can be caused by air leakage through the insulation at the pipe connections of the storage.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The PM-brännaren (pellets burner) have on commission by the company been measured and evaluated in the combustion laboratory of SERC. The objective was to measure the perform-ance and the emissions of CO and NO for three different combustion powers and for start and stop conditions. The burner have been mounted in the Bionett-boiler from Ariterm and been adjusted by the company. The boiler has been connected to a buffer store that admits firing during long period with constant inlet temperature to the boiler. The measurements have been performed by operating the boiler on constant power until stationary conditions are reached. Thereafter the following two hours of operation have been evaluated. The results show that the burner fulfils the limit values for Blauer Engel labelling and the proposed limit values for Nordic Eco labelling. The measured concentration of NO is far below all organisations limit values for NOx. Concerning the start and stop emissions there are no demands from organisa-tions to compare with, but comparing with other boilers measured at SERC, the CO emissions from PM-brännaren is in the same order of magnitude.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A stir bar sorptive extraction with liquid desorption followed by large volume injection coupled to gas chromatography–quadrupole mass spectrometry (SBSE-LD/LVI-GC–qMS) was evaluated for the simultaneous determination of higher alcohol acetates (HAA), isoamyl esters (IsoE) and ethyl esters (EE) of fatty acids. The method performance was assessed and compared with other solventless technique, the solid-phase microextraction (SPME) in headspace mode (HS). For both techniques, influential experimental parameters were optimised to provide sensitive and robust methods. The SBSE-LD/LVI methodology was previously optimised in terms of extraction time, influence of ethanol in the matrix, liquid desorption (LD) conditions and instrumental settings. Higher extraction efficiency was obtained using 60 min of extraction time, 10% ethanol content, n-pentane as desorption solvent, 15 min for the back-extraction period, 10 mL min−1 for the solvent vent flow rate and 10 °C for the inlet temperature. For HS-SPME, the fibre coated with 50/30 μm divinylbenzene/carboxen/polydimethylsiloxane (DVB/CAR/PDMS) afforded highest extraction efficiency, providing the best sensitivity for the target volatiles, particularly when the samples were extracted at 25 °C for 60 min under continuous stirring in the presence of sodium chloride (10% (w/v)). Both methodologies showed good linearity over the concentration range tested, with correlation coefficients higher than 0.984 for HS-SPME and 0.982 for SBES-LD approach, for all analytes. A good reproducibility was attained and low detection limits were achieved using both SBSE-LD (0.03–28.96 μg L−1) and HS-SPME (0.02–20.29 μg L−1) methodologies. The quantification limits for SBSE-LD approach ranging from 0.11 to 96.56 μg L−and from 0.06 to 67.63 μg L−1 for HS-SPME. Using the HS-SPME approach an average recovery of about 70% was obtained whilst by using SBSE-LD obtained average recovery were close to 80%. The analytical and procedural advantages and disadvantages of these two methods have been compared. Both analytical methods were used to determine the HAA, IsoE and EE fatty acids content in “Terras Madeirenses” table wines. A total of 16 esters were identified and quantified from the wine extracts by HS-SPME whereas by SBSE-LD technique were found 25 esters which include 2 higher alcohol acetates, 4 isoamyl esters and 19 ethyl esters of fatty acids. Generally SBSE-LD provided higher sensitivity with decreased analysis time.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Acerola (Malpighia emarginata D.C.) is a red fruit widely cultivated in Brazil, especially in the Northeastern region. Its increasing demand is attributed to its high ascorbic acid contents. Besides ascorbic acid, widely known by its health-benefit effects, acerola is rich in anthocyanins, which contribute for the antioxidant power of the fruit. Acerola processing produces a bright-red pomace, usually discarded. The further processing of this pomace, in order to explore its antioxidant compounds, could enhance acerola market value and rentability of its processing. Both ascorbic acid and anthocyanins are highly susceptible to degradation, that can be delayed by microencapsulation, which consists on packing particles (core) in an edible matrix (wall material). This work has been made with the purpose of producing a microencapsulated acerola pomace extract, which could be used by the food industry as a functional ingredient with antioxidant and coloring properties. Antioxidant compounds were recovered by pressing the pomace diluted in a solvent (a citric acid aqueous solution), by using a central composite design, with two variables: citric acid concentration in the solvent (0-2%), and solvent: pomace mass ratio (2:1-6:1). The acerola pomace extract was then microencapsulated by spray drying. A central composite design was adopted, with three variables: inlet temperature of the spray dryer (170o-200oC), wall material: acerola solids mass ratio (2:1-5:1), and degree of maltodextrin replacement by cashew tree gum as wall material (0-100%). The cashew tree gum was used because of its similarity to arabic gum, which is regarded as the wall material by excellence. The following conditions were considered as optimal for extraction of anthocyanins and ascorbic acid: solvent/pomace ratio, 5:1, and no citric acid in the solvent. 82.47% of the anthocyanins were recovered, as well as 83.22% of the ascorbic acid. Anthocyanin and ascorbic acid retentions were favored by lower inlet temperatures, higher wall material: acerola solids mass ratio and higher maltodextrin replacement by cashew tree gum, which was presented as a promising wall material. The more adequate microencapsulation conditions, based not only on retention of antioxidant compounds but also on physical properties of the final powder, were the following: inlet temperature, 185oC; wall material: acerola solids mass ratio, 5:1, and minimum degree of maltodextrin replacement by cashew tree gum, 50%

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The flow assurance has become one of the topics of greatest interest in the oil industry, mainly due to production and transportation of oil in regions with extreme temperature and pressure. In these operations the wax deposition is a commonly problem in flow of paraffinic oils, causing the rising costs of the process, due to increased energy cost of pumping, decreased production, increased pressure on the line and risk of blockage of the pipeline. In order to describe the behavior of the wax deposition phenomena in turbulent flow of paraffinic oils, under different operations conditions, in this work we developed a simulator with easy interface. For that we divided de work in four steps: (i) properties estimation (physical, thermals, of transport and thermodynamics) of n-alkanes and paraffinic mixtures by using correlations; (ii) obtainment of the solubility curve and determination the wax appearance temperature, by calculating the solid-liquid equilibrium of parafinnic systems; (iii) modelling wax deposition process, comprising momentum, mass and heat transfer; (iv) development of graphic interface in MATLAB® environment for to allow the understanding of simulation in different flow conditions as well as understand the matter of the variables (inlet temperature, external temperature, wax appearance temperature, oil composition, and time) on the behavior of the deposition process. The results showed that the simulator developed, called DepoSim, is able to calculate the profile of temperature, thickness of the deposit, and the amount of wax deposited in a simple and fast way, and also with consistent results and applicable to the operation

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This article presents an thermoeconomic analysis of cogeneration plants, applied as a rational technique to produce electric power and saturated steam. The aim of this new methodology is the minimum exergetic manufacturing cost (EMC), based on the Second Law of Thermodynamics. The decision variables selected for the optimization are the pressure and the temperature of the steam leaving the boiler in the case of using steam turbine, and the pressure ratio, turbine exhaust temperature and mass flow in the case of using gas turbines. The equations for calculating the capital costs of the components and products are formulated as a function of these decision variables. An application of the method using real data of a multinational chemical industry located in São Paulo state is presented. The conditions which establish the minimum cost are presented as finals conclusions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This article presents a thermoeconomic analysis of cogeneration plants, applied as a rational technique to produce electric power and saturated steam. The aim of this new methodology is the minimum Exergetic Production Cost (EPC), based on the Second Law of Thermodynamics. The variables selected for the optimization are the pressure and the temperature of the steam leaving the boiler in the case of using steam turbine, and the pressure ratio, turbine exhaust temperature and mass flow in the case of using gas turbines. The equations for calculating the capital costs of the components and products are formulated as a function of these decision variables. An application of the method using real data of a multinational chemical industry located in São Paulo state is presented. The conditions which establish the minimum cost are presented as final output. (C) 2003 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Studies have been carried out on the heat transfer in a packed bed of glass beads percolated by air at moderate flow rates. Rigorous statistic analysis of the experimental data was carried out and the traditional two parameter model was used to represent them. The parameters estimated were the effective radial thermal conductivity, k, and the wall coefficient, h, through the least squares method. The results were evaluated as to the boundary bed inlet temperature, T-o, number of terms of the solution series and number of experimental points used in the estimate. Results indicated that a small difference in T-o was sufficient to promote great modifications in the estimated parameters and in the statistical properties of the model. The use of replicas at points of high parametric information of the model improved the results, although analysis of the residuals has resulted in the rejection of this alternative. In order to evaluate cion-linearity of the model, Bates and Watts (1988) curvature measurements and the Box (1971) biases of the coefficients were calculated. The intrinsic curvatures of the model (IN) tend to be concentrated at low bed heights and those due to parameter effects (PE) are spread all over the bed. The Box biases indicated both parameters as responsible for the curvatures PE, h being somewhat more problematic. (C) 2000 Elsevier B.V. Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Starches and modified starch derivations are used as carriers in the spray drying processing where apparent density is an important characteristic and should be controlled in dehydrated products for pharmaceutical use. In Brazil, the commercial starches are made from corn and cassava, but there are others with potential for extraction. The canna and taro starches were selected because they represent the extremes of granule size and thus allow the effect of this size on the apparent density of spray dried products to be tested. For comparison, commercial cassava and corn starches which are used in spray-drying and have granules of intermediate size, were also tested. The spray-drying process was carried out with a LabPlant SD 04 Spray Dryer, operating at a pressure of 6 lb/in2, air of 7,6 mL/minute, and 1 cm atomizing nozzle. The air inlet temperature was set at 200°C this model does not allow regulating outlet temperature. The spray-dryer products had boldo leaf extract as base, using the four starches as carrier. The dry product was evaluated for humidity, water activity (Aw), granulometry and apparent density. The results showed that the size of the particles, which was a consequence of the size of the starch granules, influenced the apparent density of the spray dried products, which as higher (694, 27 g/mL) for the canna starch and lower (456, 13 g/mL) for taro starch. Corn and cassava starches showed very close and intermediate values, 521,51 and 58,48 g/mL, which also represent the standard range of starch granule size.