944 resultados para tropical grasses
Resumo:
Este trabalho teve por objetivo avaliar, comparativamente, a capacidade extratora de P da soja (Glycine max), milho (Zea mays), braquiária brizantha (Brachiaria brizantha) e milheto (Pennisetum glaucum), submetidos a diferentes doses do fertilizante fosfatado natural fosforita Alvorada, em condições controladas. Utilizou-se um Argissolo Vermelho distroférrico de textura média, corrigido e adubado com N, K e micronutrientes. As espécies foram cultivadas em vasos de 18 dm³ por 50 dias em casa de vegetação, com aplicação de 0, 100, 200 e 400 kg ha-1 de P2O5. As quantidades de fosfato natural foram calculadas com base na teor total de P2O5. O milho, ao contrário da soja, respondeu positivamente ao aumento da dose de P2O5 via fosforita Alvorada. A Brachiaria brizantha cv. Marandu, apesar da menor produção de matéria seca em relação ao milheto, apresentou alta eficiência na absorção de P, mesmo com o fornecido deste nutriente por meio de fonte pouco solúvel. O milheto apresentou-se como importante espécie de cobertura do solo, graças ao alto potencial para produção de fitomassa e reciclagem de P num intervalo de tempo relativamente curto (50 dias).
Resumo:
The objective of this study was to evaluate the quality of housing and the physical and chemical characteristics of meat from sheep raised on pasture Brachiaria brizantha and Panicum maximum. The experiment was conducted in the physical area of the Study Group on Forage (GEFOR), located in the Academic Unit Specialized in Agricultural Sciences - Federal University of Rio Grande do Norte - UFRN in Macaíba, RN, Brazil. We used 32 lambs SPRD, obtained from herds in the state, with liveweight (LW) of 24.5 kg were assigned randomly to four treatments consisting of tropical grasses, two cultivars of Brachiaria brizantha, Marandu and Piatã, and two of Panicum maximum, Aruana and Massai. The experimental area was 2.88 ha, divided into 4 paddocks of 0.72 ha, where each picket consisted of a farm and was divided into six plots of 0.12 ha, where the animals remained under rotational grazing. The period of adaptation to the pickets was seven days. At the beginning of the experiment the animals were weighed, identified with plastic earrings and necklaces colored according to the treatment, and treated against. The lambs were loose in the paddock at 8 am and collected at 16 hours, which returned to collective pens. During the time of grazing animals had free access to mineral supplement with monensin Ovinofós ® and water. Before entering the paddocks of pasture were sampled to characterize the chemical composition. Every seven days occurred at weighing, with fasting, to monitor the weight development. Cultivars Marandu, Aruana, Piatã and Massai were grazed for 133, 129, 143 and 142 days, respectively, until the lambs reach slaughter weight. Arriving at 32 kg lambs were evaluated subjectively for body condition score by, passed through fasting period, diet and water for 16 hours were slaughtered. Measurements were made in the inner and outer casings in addition to subjective evaluations regarding muscling, finish and quantity of pelvic-renal fat, then each was divided longitudinally into two half-carcases and cuts were made in the commercial left half, and after heavy calculated their income. Between the 12th and 13th thoracic vertebrae, was performed a cut to expose the cross section of the Longissimus dorsi, which was drawn on the rib eye area (REA) in transparent film. Fat thickness and extent of AOL GR were determined using a caliper. A tissue composition was determined by dissection of the legs. Analyzes were performed physical (color, cooking loss and shear force) and chemical composition of meat (moisture, ash, protein and lipids) in Longissimus dorsi muscle. Grazing tropical grass Brachiaria brizantha cvs. Marandu and Piatã and Panicum maximum cvs. Aruana and Massai can be used for lambs SRPD in the rainy season, because not alter the physico-chemical and chemical composition of meat
Resumo:
The production of forage grasses is directly related to the morphogenesis. The knowledge of the morphogenetic and structural variables of forage plants is important for determining appropriate conditions of grazing livestock to ensure efficient and sustainable. Thus the objective of this study was to evaluate morphogenetic and structural responses of three genera of grasses, Brachiaria, Panicum and Cenchrus in a cutting regime. The experimental design was randomized blocks with three replications and six treatments. After each section were evaluated for forage production, appearance and elongation rates of leaves and stem, phyllochron, final leaf length, number of living leaves, leaf lifespan, leaf senescence rate, tiller density and tiller dynamics. On forage yield the highest values were obtained in cultivars Xaraes, Piata and Massai. The tiller density was higher for cv Massai. It is concluded that the cultivars of Panicum and Brachiaria had a higher tillering dynamics in increasing the turnover rate of tissues that are indicators of forage production, assuming that the cultivars of these genera are predisposed to use forage in the Northeast
Resumo:
O experimento foi conduzido para se avaliarem as alterações na composição química e na digestibilidade in vitro da matéria seca (DIVMS) dos fenos de Brachiaria decumbens Stapf, Brachiaria brizantha (Hochst ex. A. Rich) Stapf e jaraguá (Hyparrhenia rufa Ness Stapf), colhidos no estádio de maturação das sementes e tratados com amônia anidra (3,0% MS) ou uréia (5,4% MS). A análise dos dados demonstra que a amonização diminuiu os conteúdos de FDN e hemicelulose com a mesma eficiência. Os tratamentos químicos não alteraram os teores de FDA, celulose e lignina. Observou-se aumento nos teores de compostos nitrogenados, como N total e N insolúvel em detergente ácido (NIDA) em resposta à amonização. A relação NIDA/NT diminuiu com a amonização, aumentando a quantidade de N disponível para a digestão. A DIVMS aumentou em resposta às alterações observadas na composição química da fração fibrosa e incremento no conteúdo de N prontamente digestível dos fenos tratados.
Resumo:
Avaliaram-se as alterações da fração fibrosa e as características químicas dos fenos de braquiária decumbens (Brachiaria decumbnes Stapf) e jaraguá (Hyparrhenia rufa Ness Stapf) não-tratados, tratados com uréia (U-5,4% da MS), uréia (UL-5,4% da MS) mais labe-labe (Lablab purpureus L. Sweet, cv. Highworth-3,0% da MS) ou amônia anidra (NH3 -3,0% da MS). O tratamento químico com uréia ou NH3 aumentou o pH e a digestibilidade in vitro verdadeira dos fenos. A amonização não alterou os teores de fibra em detergente ácido e celulose, mas diminuiu os de fibra em detergente neutro, hemicelulose e lignina. O uso do labe-labe como fonte adicional de urease não aumentou a eficiência da uréia no tratamento dos volumosos. As avaliações do conteúdo de umidade, do poder tampão e da atividade ureática são técnicas que podem auxiliar na previsão das respostas dos volumosos à amonização com o uso de uréia.
Resumo:
The experiment was carried out to evaluate the effects of two moisture levels (18-20% and 13-15%) and three anhydrous ammonia levels (0.0; 1.5; 3.0% of NH3) on the quality of Brachiaria decumbens Stapf hay. The hay was bailed in April and weighed and treated under plastic cover during 30 days. The hay presented a similar chemical composition when bailed with high or low moisture. The percentages of NDF (80.59; 77.61; 76.10%); hemicellulose (32.56; 29.48; 28.76%) and lignin (9.53; 8.21; 7.54% decreased and the percentages of crude protein (4.04; 11.35; 13.22%) and IVDMD (36.78; 49.72; 54.33%) increased as the NH3 level increased. The fractions ADF, cellulose, and ADIN did not change due to the ammoniation. The incidence of fungi decreased with application of NH3 being the better results obtained with the 1.5% treatments.
Resumo:
The objective was to study the physical attributes of an Oxisol under fallow or planted with tropical grasses under grazing. The experiment was conducted under the experimental design of randomized blocks in split-plot 2 x 5, being five types of use of soil (Brachiaria ruziziensis, Panicum maximum cv. Aries, Brachiaria brizantha cv. MG5, Panicum maximum cv. Mombaca and fallow) and two evaluation periods (after the first and after the second grazing), with four replications. We evaluated the characteristics of soil bulk density, total porosity, microporosity and macroporosity, after the first and second grazing, and soil resistance to penetration after the second grazing. In layer of 0.00 to 0.10 m, the macroporosity was affected by the interaction between types of use and evaluation periods, while the microporosity and total porosity were reduced and the density was increased from first to second evaluation time. In the subsurface layer (0.10-0.20 m), there were significant effect only of evaluation time, on the macroporosity, total porosity and density. The porosity were reduced, while the density increased from first to second evaluation time. No significant effects of types of use of soil on penetration resistance in all layers studied. The maintenance of an Oxisol under fallow or cultivation with tropical grasses subjected to grazing cattle causes a reduction in total porosity and increased density of surface soil layers (0 to 0.10 m) and subsurface (0.10 - 0.20 m), without promoting changes on resistance to penetration mechanics.
Resumo:
The objective of this work was to quantify methane (CH4) emission using the sulfur hexafluoride (SF6) tracer technique, by dairy cattle on pasture in Brazilian tropical field conditions. Measurements were performed in the rainy season, with Holstein and Holstein x Zebu crossbred, from lactating and dry cows and heifers grazing fertilized Tobiatã grass, and heifers grazing unfertilized Brachiaria grass. Methane and SF6 concentrations were determined by gas chromatograph. Methane emissions by lactating cows varied from 13.8 to 16.8 g/hour, by dry cows from 11.6 to 12.3 g/hour, by heifers grazing fertilized grass was 9.5 g/hour and by heifers grazing unfertilized grass varied from 7.6 to 8.3 g/hour or 66 to 72 kg/head/year. Methane emission per digestive dry matter intake (DMDI) varied from 42 to 69 g/kg DMDI for lactating cows, 46 to 56 g/kg for dry cows, 45 to 58 g/kg for heifers grazing fertilized grass and 58 to 62 g/kg for heifers in unfertilized grass pasture. The CH4 emission measured on dairy cattle feeding tropical grasses was higher than that observed for temperate climate conditions.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
This study was carried out at Campo Experimental do Cerrado in Embrapa Amapá, Brazil, aiming to select, based on the agronomic characteristics of productivity, dry matter and nutritional quality of the forage, the accesses of species from the genus Paspalum that possess potentiality of use as forage plants. During the years 2000, 2001 and 2002, 21 accesses of grasses were evaluated, including 18 of Paspalum and three control species: Brachiaria decumbens, Andropogon gayanus cv. Baetí and Brachiaria brizantha cv. Marandú. The experimental design was complete randomized block with three replications. The variables studied were: production of dry matter, neutral detergent fiber on the dry matter, in vitro digestibility of dry matter and crude protein content in the dry matter. All the accesses showed marked reduction in productivity and quality of produced forage, when the climatic conditions became unfavorable, showing that Paspalum as the other tropical grasses have high seasonal production. Based on the variables studied, the selected accesses were P. guenoarum (BRA-014851), P. atratum (BRA-9661) and Paspalum sp. (BRA- 009407).
Resumo:
Pós-graduação em Agronomia - FEIS
Resumo:
We compared the lignin contents of tropical forages by different analytical methods and evaluated their correlations with parameters related to the degradation of neutral detergent fiber (NDF). The lignin content was evaluated by five methods: cellulose solubilization in sulfuric acid [Lignin (sa)], oxidation with potassium permanganate [Lignin (pm)], the Klason lignin method (KL), solubilization in acetyl bromide from acid detergent fiber (ABLadf) and solubilization in acetyl bromide from the cell wall (ABLcw). Samples from ten grasses and ten legumes were used. The lignin content values obtained by gravimetric methods were also corrected for protein contamination, and the corrected values were referred to as Lignin (sa)p, Lignin (pm)p and KLp. The indigestible fraction of NDF (iNDF), the discrete lag (LAG) and the fractional rate of degradation (kd) of NDF were estimated using an in vitro assay. Correcting for protein resulted in reductions (P < 0.05) in the lignin contents as measured by the Lignin (sa), Lignin (pm) and, especially, the KL methods. There was an interaction (P < 0.05) of analytical method and forage group for lignin content. In general, LKp method provided the higher (P < 0.05) lignin contents. The estimates of lignin content obtained by the Lignin (sa)p, Lignin (pm)p and LKp methods were associated (P > 0.05) with all of the NDF degradation parameters. However, the strongest correlation coefficients for all methods evaluated were obtained with Lignin (pm)p and KLp. The lignin content estimated by the ABLcw method did not correlate (P > 0.05) with any parameters of NDF degradation. There was a correlation (P < 0.05) between the lignin content estimated by the ABLadf method and iNDF content. Nonetheless, this correlation was weaker than those found with gravimetric methods. From these results, we concluded that the gravimetric methods produce residues that are contaminated by nitrogenous compounds. Adjustment for these contaminants is suggested, particularly for the KL method, to express lignin content with greater accuracy. The relationships between lignin content measurements and NDF degradation parameters can be better determined using KLp and Lignin (pm)p methods. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
This paper reports a study in the wet tropics of Queensland on the fate of urea applied to a dairy pasture in the absence of grazing animals. A nitrogen balance was conducted in cylindrical plots with N-15-labelled urea, and ammonia volatilisation was determined using a mass balance micrometeorological method. The pasture plants took up 42% of the applied nitrogen in the 98 days between fertiliser application and harvest. At harvest 18% of the applied nitrogen was found in the soil, and 40% was lost from the plant-soil system. The micrometeorological study showed that 20% of the unrecovered nitrogen was lost by ammonia volatilisation. As there was no evidence for leaching or runoff losses it was concluded that the remaining 20% of the applied nitrogen was lost by denitrification. It is evident from these results that fertiliser nitrogen is not being used efficiently on dairy pastures, and that practices need to be changed to conserve fertiliser nitrogen and reduce contamination of the environment.
Resumo:
A major constraint to agricultural production in acid soils of tropical regions is the low soil P availability, due to the high adsorption capacity, low P level in the source material and low efficiency of P uptake and use by most of the modern varieties grown commercially. This study was carried out to evaluate the biomass production and P use by forage grasses on two soils fertilized with two P sources of different solubility. Two experiments were carried out, one for each soil (Cambisol and Latosol), using pots filled with 4 dm³ soil in a completely randomized design and a 4 x 2 factorial scheme. The treatments consisted of a combination of four forage plants (Brachiaria decumbens, Brachiaria brizantha, Pennisetum glaucum and Sorghum bicolor) with two P sources (Triple Superphosphate - TSP and Arad Reactive Phosphate - ARP), with four replications. The forage grasses were harvested at pre-flowering, when dry matter weight and P concentrations were measured. Based on the P concentration and dry matter production, the total P accumulation was calculated. With these data, the following indices were calculated: the P uptake efficiency of roots, P use efficiency, use efficiency of available P, use efficiency of applied P and agronomic efficiency. The use of the source with higher solubility (TSP) resulted, generally, in higher total dry matter and total P accumulation in the forage grasses, in both soils. For the less reactive source (ARP), the means found in the forage grasses, for use efficiency and efficient use of available P, were always higher when grown in Latosol, indicating favorable conditions for the solubility of ARP. The total dry matter of Brachiaria brizantha was generally higher, with low P uptake, accumulation and translocation, which indicated good P use efficiency for both P sources and soils. The forage plants differed in the P use potential, due to the sources of the applied P and of the soils used. Less than 10 % of the applied P was immobilized in the forage dry matter. Highest values were observed for TSP, but this was not reflected in a higher use efficiency of P from this source.
Resumo:
The techniques available for the remediation of environmental accidents involving petroleum hydrocarbons are generally high-cost solutions. A cheaper, practical and ecologically relevant alternative is the association of plants with microorganisms that contribute to the degradation and removal of hydrocarbons from the soil. The growth of three tropical grass species (Brachiaria brizantha, Brachiaria decumbens and Paspalum notatum) and the survival of root-associated bacterial communities was evaluated at different diesel oil concentrations. Seeds of three grass species were germinated in greenhouse and at different doses of diesel (0, 2.5, 5 and 10 g kg-1 soil). Plants were grown for 10 weeks with periodic assessment of germination, growth (fresh and dry weight), height, and number of bacteria in the soil (pots with or without plants). Growth and biomass of B. decumbens and P. notatum declined significantly when planted in diesel-oil contaminated soils. The presence of diesel fuel did not affect the growth of B. brizantha, which was highly tolerant to this pollutant. Bacterial growth was significant (p < 0.05) and the increase was directly proportional to the diesel dose. Bacteria growth in diesel-contaminated soils was stimulated up to 5-fold by the presence of grasses, demonstrating the positive interactions between rhizosphere and hydrocarbon-degrading bacteria in the remediation of diesel-contaminated soils.