949 resultados para trophic cascade


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Introduction Many prey species around the world are suffering declines due to a variety of interacting causes such as land use change, climate change, invasive species and novel disease. Recent studies on the ecological roles of top-predators have suggested that lethal top-predator control by humans (typically undertaken to protect livestock or managed game from predation) is an indirect additional cause of prey declines through trophic cascade effects. Such studies have prompted calls to prohibit lethal top-predator control with the expectation that doing so will result in widespread benefits for biodiversity at all trophic levels. However, applied experiments investigating in situ responses of prey populations to contemporary top-predator management practices are few and none have previously been conducted on the eclectic suite of native and exotic mammalian, reptilian, avian and amphibian predator and prey taxa we simultaneously assess. We conducted a series of landscape-scale, multi-year, manipulative experiments at nine sites spanning five ecosystem types across the Australian continental rangelands to investigate the responses of sympatric prey populations to contemporary poison-baiting programs intended to control top-predators (dingoes) for livestock protection. Results Prey populations were almost always in similar or greater abundances in baited areas. Short-term prey responses to baiting were seldom apparent. Longer-term prey population trends fluctuated independently of baiting for every prey species at all sites, and divergence or convergence of prey population trends occurred rarely. Top-predator population trends fluctuated independently of baiting in all cases, and never did diverge or converge. Mesopredator population trends likewise fluctuated independently of baiting in almost all cases, but did diverge or converge in a few instances. Conclusions These results demonstrate that Australian populations of prey fauna at lower trophic levels are typically unaffected by top-predator control because top-predator populations are not substantially affected by contemporary control practices, thus averting a trophic cascade. We conclude that alteration of current top-predator management practices is probably unnecessary for enhancing fauna recovery in the Australian rangelands. More generally, our results suggest that theoretical and observational studies advancing the idea that lethal control of top-predators induces trophic cascades may not be as universal as previously supposed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Top-predators can sometimes be important for structuring fauna assemblages in terrestrial ecosystems. Through a complex trophic cascade, the lethal control of top-predators has been predicted to elicit positive population responses from mesopredators that may in turn increase predation pressure on prey species of concern. In support of this hypothesis, many relevant research papers, opinion pieces and literature reviews identify three particular case studies as supporting evidence for top-predator control-induced release of mesopredators in Australia. However, many fundamental details essential for supporting this hypothesis are missing from these case studies, which were each designed to investigate alternative aims. Here, we re-evaluate the strength of evidence for top-predator control-induced mesopredator release from these three studies after comprehensive analyses of associated unpublished correlative and experimental data. Circumstantial evidence alluded to mesopredator releases of either the European Red Fox (Vulpes vulpes) or feral Cat (Felis catus) coinciding with Dingo (Canis lupus dingo) control in each case. Importantly, however, substantial limitations in predator population sampling techniques and/or experimental designs preclude strong assertions about the effect of lethal control on mesopredator populations from these studies. In all cases, multiple confounding factors and plausible alternative explanations for observed changes in predator populations exist. In accord with several critical reviews and a growing body of demonstrated experimental evidence on the subject, we conclude that there is an absence of reliable evidence for top-predator control-induced mesopredator release from these three case studies. Well-designed and executed studies are critical for investigating potential top-predator control-induced mesopredator release.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

O presente estudo analisou o conteúdo digestório de 221 indivíduos de seis espécies de peixes, do reservatório de Ribeirão das Lajes (Piraí-RJ), sendo 44 exemplares da espécie Loricariichthys castaneus, 56 de Parauchenipterus striatulus, 46 de Metynnis maculatus, 40 de Astyanax bimaculatus, 31 de Astyanax parahybae e 4 de Rhamdia quelen. O intuito foi o de estabelecer suas dietas, através do emprego do índice de importância alimentar (IAi), verificar a existência de diferenças na alimentação entre épocas seca e chuvosa e ainda as suas relações tróficas no ambiente aquático em questão. Não foram observadas grandes alterações da dieta das espécies estudadas entre épocas do ano. Foi evidenciada uma utilização de recursos alimentares semelhantes entre as espécies, que puderam ser divididas em dois grupos: um composto por espécies de hábitos onívoros com tendência a insetivoria e que empregaram recursos alóctones em suas dietas, formado por A. bimaculatus, A. parahybae e P. striatulus e outro contendo L. castaneus, R. quelen e M. maculatus que apresentaram uma maior amplitude de itens ingeridos, sendo muitos itens associados ao substrato e alguns a coluna dágua. Existiu uma sobreposição alimentar entre as espécies onívoras, todavia a ampla disponibilidade de recursos alimentares passíveis de serem explorados pelos peixes no reservatório faz com que esta sobreposição não se converta em possível competição por alimentos. Além disso, as espécies exploraram secundariamente itens alimentares diferenciados em suas dietas.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Manu National Park of southern Peru is one of the most renowned protected areas in the world, yet large-bodied vertebrate surveys conducted to date have been restricted to Cocha Cashu Biological Station, a research station covering <0.06 percent of the 1.7Mha park. Manu Park is occupied by >460 settled Matsigenka Amerindians, 300-400 isolated Matsigenka, and several, little-known groups of isolated hunter-gatherers, yet the impact of these native Amazonians on game vertebrate populations within the park remains poorly understood. On the basis of 1495 km of standardized line-transect censuses, we present density and biomass estimates for 23 mammal, bird, and reptile species for seven lowland and upland forest sites in Manu Park, including Cocha Cashu. We compare these estimates between hunted and nonhunted sites within Manu Park, and with other Neotropical forest sites. Manu Park safeguards some of the most species-rich and highest biomass assemblages of arboreal and terrestrial mammals ever recorded in Neotropical forests, most likely because of its direct Andean influence and high levels of soil fertility. Relative to Barro Colorado Island, seed predators and arboreal folivores in Manu are rare, and generalist frugivores specializing on mature fruit pulp are abundant. The impact of such a qualitative shift in the vertebrate community on the dynamics of plant regeneration, and therefore, on our understanding of tropical plant ecology, must be profound. Despite a number of external threats, Manu Park continues to serve as a baseline against which other Neotropical forests can be gauged.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The changes of cladoceran zooplankton from 1980 to 1996 were studied in a hypereutrophic subtropical Chinese lake, Lake Donghu, and an enclosure experiment was conducted to examine the possible role of the increased fish production in the enhancement of Moina micrura in the lake after mid-1980s. During the 1980s, the most striking event of the cladoceran community in the lake was that dominance of Daphnia was replaced by Moina following a steady increase in the production of planktivorous fish. This replacement was a direct result of increased fish predation, since our enclosure experiment indicates that Moina are less vulnerable to fish predation than Daphnia, and that increase in fish-stocking rate favors the development of M. micrura. The stronger resistance of M. micrura to fish predation may be attributed to its smaller body size and higher intrinsic growth rate than the daphnids. The present study has a strong parallel with the responses of zooplankton community to predators observed in many temperate lakes, and perhaps the only real difference is that in our lake the small rapidly growing cladoceran is Moina, rather than Bosmina or some other typical temperate take species. In the present study, the strong fish predation caused a shift from Daphnia to small zooplankton but not a corresponding increase in phytoplankton, which is in sharp contrast to what is expected with the classic "trophic cascade" process.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Current climate change and overfishing are affecting the productivity and structure of marine ecosystems. This situation is unprecedented for the marine biosphere and it is essential to understand the mechanisms and pathways by which ecosystems respond. We report that climate change and overfishing are likely to be responsible for a rapid restructuring of a highly productive marine ecosystem with effects throughout the pelagos and the benthos. In the mid-1980s, climate change, consequent modifications in the North Sea plankton, and fishing, all reduced North Sea cod recruitment. In this region, production of many benthic species respond positively and immediately to temperature. Analysis of a long-term, spatially extensive biological (plankton and cod) and physical (sea surface temperature) dataset suggests that synchronous changes in cod numbers and sea temperature have established an extensive trophic cascade favoring lower trophic level groups over economic fisheries. A proliferation of jellyfish that we detect may signal the climax of these changes. This modified North Sea ecology may provide a clear indication of the synergistic consequences of coincident climate change and overfishing. The extent of the ecosystem restructuring that has occurred in the North Sea suggests we are unlikely to reverse current climate and human-induced effects through ecosystem resource management in the short term. Rather, we should understand and adapt to new ecological regimes. This implies that fisheries management policies will have to be fully integrated with the ecological consequences of climate change to prevent a similar collapse in an exploited marine ecosystem elsewhere.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Body mass has been shown to scale negatively with abundance in a wide range of habitats and ecosystems. It is believed that this relationship has important consequences for the distribution and maintenance of energy in natural communities. Some studies have shown that the relationship between body mass and abundance may be robust to major food web perturbations, fuelling the belief that natural processes may preserve the slope of this relationship and the associated cycling of energy and nutrients. Here, we use data from a long-term experimental food web manipulation to examine this issue in a semi-natural environment. Similar communities were developed in large experimental mesocosms over a six month period. Some of the mesocosms were then subjected to species removals, based on the mean strength of their trophic interactions in the communities. In treatments where the strongest interactors were removed, a community-level trophic cascade occurred. The biomass density of invertebrates increased dramatically in these communities, which led to a suppression of primary production. In spite of these widespread changes in ecosystem functioning, the slope of the relationship between body mass and abundance remained unchanged. This was the case whether average species body mass and abundance or individual organism size spectra were considered. An examination of changes in species composition before and after the experimental manipulations revealed an important mechanism for maintaining the body mass-abundance relationship. The manipulated communities all had a higher species turnover than the intact communities, with the highest turnover in communities that experienced cascading effects. As some species increased in body mass and abundance, new species filled the available size-abundance niches that were created. This maintained the overall body mass-abundance relationship and provided a stabilising structure to these experimental communities.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

1. Global declines in biodiversity have stimulated much research into the consequences of species loss for ecosystems and the goods and services they provide. Species at higher trophic levels are at greater risk of human-induced extinction yet remarkably little is known about the effects of consumer species loss across multiple trophic levels in natural complex ecosystems. Previous studies have been criticized for lacking experimental realism and appropriate temporal scale, running for short periods that are not sufficient to detect many of the mechanisms operating in the field.
2. We manipulated the presence of two predator species and two groups of their prey (primary consumers) and measured their independent and interactive effects on primary producers in a natural marine benthic system. The presence of predators and their prey was manipulated in the field for 14 months to distinguish clearly the direct and indirect effects of predators on primary producers and to identify mechanisms driving responses.
3. We found that the loss of either predator species had indirect negative effects on species diversity and total cover of primary producers. These cascading effects of predator species loss were mediated by the presence of intermediate consumers. Moreover, the presence of different intermediate consumers, irrespective of the presence or absence of their predators, determined primary producer assemblage structure. We identified direct negative effects of predators on their prey and several indirect effects of predators on primary producers but not all interactions could have been predicted based on trophic level.
4. Our findings demonstrate the importance of trophic cascade effects coupled with non-trophic interactions when predicting the effects of loss of predator species on primary producers and consequently for ecosystem functioning. There is a pressing need for improved understanding of the effects of loss of consumers, based on realistic scenarios of diversity loss, to test conceptual frameworks linking predator diversity to variation in ecosystem functioning and for the protection of biodiversity, ecosystem functioning and related services.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The prediction and management of ecosystem responses to global environmental change would profit from a clearer understanding of the mechanisms determining the structure and dynamics of ecological communities. The analytic theory presented here develops a causally closed picture for the mechanisms controlling community and population size structure, in particular community size spectra, and their dynamic responses to perturbations, with emphasis on marine ecosystems. Important implications are summarised in non-technical form. These include the identification of three different responses of community size spectra to size-specific pressures (of which one is the classical trophic cascade), an explanation for the observed slow recovery of fish communities from exploitation, and clarification of the mechanism controlling predation mortality rates. The theory builds on a community model that describes trophic interactions among size-structured populations and explicitly represents the full life cycles of species. An approximate time-dependent analytic solution of the model is obtained by coarse graining over maturation body sizes to obtain a simple description of the model steady state, linearising near the steady state, and then eliminating intraspecific size structure by means of the quasi-neutral approximation. The result is a convolution equation for trophic interactions among species of different maturation body sizes, which is solved analytically using a novel technique based on a multiscale expansion.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A size and trait-based marine community model was used to investigate interactions, with potential implications for yields, when a fishery targeting forage fish species (whose main adult diet is zooplankton) co-occurs with a fishery targeting larger-sized predator species. Predicted effects on the size structure of the fish community, growth and recruitment of fishes, and yield from the fisheries were used to identify management trade-offs among the different fisheries. Results showed that moderate fishing on forage fishes imposed only small effects on predator fisheries, whereas predator fisheries could enhance yield from forage fisheries under some circumstances.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dissertação de mestrado, Biologia Marinha, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2015

Relevância:

60.00% 60.00%

Publicador:

Resumo:

En aquesta tesi doctoral s'han estudiat els efectes directes i indirectes de dos tipus d'espècies claus de la comunitat aquàtica dels aiguamolls de l'Empordà (aiguamolls costaners mediterranis amb una xarxa tròfica senzilla). S'han realitzat experiments al camp utilitzant microcosmos i mesocosmos i els resultats han estat analitzats mitjançant tres aproximacions: la taxonòmica, la funcional i la de mides. S'ha comprovat que en situacions amb absència de predadors i dominància d'una única espècie en el zooplàncton (en aquest cas Calanipeda aquaedulcis i Daphnia magna), la segregació del recurs entre els diferents estadis de desenvolupament de la mateixa espècie zooplanctònica és una estratègia per evitar la competència intraespecífica en condicions de limitació de recurs. Per altra banda, la presència de diferents top-predators a la comunitat aquàtica (en aquest cas la medusa Odessia maeotica i el peix Aphanius iberus) desencadena una cascada tròfica en el plàncton però amb efectes top-down diferents segons el top-predator.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Although the effects of nutrient enhancement on aquatic systems are well documented, the consequences of nutritional supplements on soil food webs are poorly understood, and results of past research examining bottom-up effects are often conflicting. In addition, many studies have failed to separate the effects of nutrient enrichment and the physical effects of adding organic matter. In this field study, we hypothesised that the addition of nitrogen to soil would result in a trophic cascade, through detritivores (Collembola) to predators (spiders), increasing invertebrate numbers and diversity. Nitrogen and lime were added to plots in an upland grassland in a randomised block design. Populations of Collembola and spiders were sampled by means of pitfall traps and identified to species. Seventeen species of Collembola were identified from the nitrogen plus lime (N + L) and control plots. Species assemblage, diversity, richness, evenness and total number were not affected by nutrient additions. However, there was an increase in the number of Isotomidae juveniles and Parisotoma anglicana trapped in the N + L plots. Of the 44 spider species identified, over 80% were Linyphiidae. An effect on species assemblage from the addition of N + L to the plots was observed on two of the four sampling dates (July 2002 and June 2003). The linyphiid, Oedothorax retusus, was the only species significantly affected by the treatments and was more likely to be trapped in the control plots. The increased number of juvenile Collembola, and change in community composition of spiders, were consequences of the bottom-up effect caused by nutrient inputs. However, despite efforts to eliminate the indirect effects of nutrient inputs, a reduction in soil moisture in the N + L plots cannot be eliminated as a cause of the invertebrate population changes observed. Even so, this experiment was not confounded by the physical effects of habitat structure reported in most previous studies. It provides evidence of moderate bottom-up influences of epigeic soil invertebrate food webs and distinguishes between nutrient addition and plant physical structure effects. It also emphasises the importance Of understanding the effects of soil management practices on soil biodiversity, which is under increasing pressure from land development and food production.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The post-larvae and fry of Australian native species, including those of species belonging to the family Percichthyidae, are routinely reared to a fingerling size (35-55 mm in length) in fertilised earthen fry rearing ponds. The juveniles of Murray cod (Maccullochella peelii peelii\ trout cod (Maccullochella macquariensis) and Macquarie perch (Macquaria australasicd) (Percichthyidae) are grown in fry rearing ponds at the Marine and Freshwater Resources Institute, Snobs Creek (Vie. Australia) for production of fingerlings for stock enhancement and aquaculture purposes. However, no detailed studies have been undertaken of the productivity of these ponds and factors that influence fish production. An ecologically based study was undertaken to increase the knowledge of pond ecology and dynamics, particularly in relation to the rearing of juvenile Murray cod, trout cod and Macquarie perch in ponds. Over nine consecutive seasons commencing in 1991, water chemistry, plankton, macrobenthos (2 seasons only) and fish were monitored and studied in five ponds located at Snobs Creek. A total of 80 pond fillings were undertaken during the study period. Additional data collected from another 24 pond fillings undertaken at Snobs Creek collected prior to this study were included in some analyses. Water chemistry parameters monitored in the ponds included, temperature, dissolved oxygen pH, ammonia, nitrite, nitrate, orthophosphate and alkalinity. Water chemistry varied spatially (within and between ponds) and temporally (diurnally, daily and seasonally). Liming of ponds increased the total alkalinity to levels that were considered to be suitable for enhancing plankton communities and fish production. Water quality within the ponds for the most part was suitable for the rearing of juvenile Murray cod, trout cod and Macquarie perch, as reflected in overall production (growth, survival and yield) from the ponds. However, at times some parameters reached levels which may have stressed fish and reduced growth and survival, in particular, low dissolved oxygen concentrations (minimum 1.18 mg/L), high temperatures (maximum 34°C), high pH (maximum 10.38) and high unionised ammonia (maximum 0.58 mg/L). Species belonging to 37 phytoplankton, 45 zooplankton and 17 chironomid taxa were identified from the ponds during the study. In addition, an extensive checklist of aquatic flora and fauna, recorded from aquaculture ponds in south-eastern Australia, was compiled. However, plankton and benthos samples were usually numerically dominated by a few species only. Rotifers (especially Filinia, Brachionus, Polyarthra, and Asplanchnd), cladocerans (Moina and Daphnid) and copepods (Mesocyclops and Boeckelld) were most abundant and common in the plankton, while chironomids (Chironomus, Polypedilum, and Prodadius) and oligochaetes were most common and abundant in the benthos. Both abundance and species composition of the plankton and macrobenthos varied spatially (within and between ponds) and temporally (diurnally, daily and seasonally). Chlorophyll a concentrations, which ranged from 1.8 to 184 \ig/L (mean 29.37 ng/L), initially peaked within two weeks of filling and fertilising the ponds. Zooplankton peaked in abundance 2-4 weeks after filling the ponds. The maximum zooplankton density recorded in the ponds was 6,621 ind./L (mean 721 ind./L). Typically, amongst the zooplankton, rotifers were first to develop high densities (2nd-3rd week after filling), followed by cladocerans (2nd-4th week after filling) then copepods (2nd-5th week after filling). Chironomid abundance on average peaked later (during the 5th week after filling). The maximum chironomid density recorded in the ponds was 27,470 ind./m2 (mean 4,379 ind./m2). Length-weight, age-weight and age-length relationships were determined for juvenile Murray cod, trout cod and Macquarie perch reared in ponds. These relationships were most similar for Murray cod and trout cod, which are more closely related phylogenetically and similar morphologically than Macquarie perch. Growth of fish was negatively correlated with both size at stocking and stocking biomass. Stocking density experiments showed that, at higher densities, growth offish was significantly reduced, but survival was not affected. The diets of juvenile Murray cod trout cod and Macquarie perch reared in fry ponds were similar. The cladocerans Moina and Daphnia, adult calanoid and cyclopoid copepods and the chironomids, Chironomus, Polypedilum and Procladius were the most commonly occurring and abundant prey. Selection for rotifers and copepod nauplii was strongly negative for all three species of fish. Size range of prey consumed was positively correlated with fish size for trout cod and Macquarie perch, but not for Murray cod. Diet composition changed as the fish grew. Early after stocking the fish into the ponds, Moina was generally the more common prey consumed, while in latter weeks, copepods and chironomids became more abundant and common in the diet. On a dry weight basis, chironomid larvae were the most important component in the diets of these fish species. Selective feeding by fish on larger planktonic species such as adult copepods and cladocerans, may have influenced the plankton community structure as proposed by the trophic cascade or top -down hypothesis. The proximate composition and energy content of Murray cod, trout cod and Macquarie perch, reared in the ponds did not vary significantly between the species, and few significant changes were observed as the fish grew. These results suggested that the nutrient requirements of these species might not vary over the size range of fish examined. Significant differences in the proximate composition of prey were observed between species, size of species and time of season. The energy content of prey (cladocerans, copepods and chironomids) on a pond basis, was closely related to the abundance of these taxa in the ponds. Data collected from all pond fillings during the present study, along with historical data from pond fillings undertaken prior to this study, were combined in a data matrix and analysed for interactions between pairs of parameters. In particular, interactions between selected water chemistry parameters, zooplankton and chironomid abundance indicators were analysed to identify key factors that influence fish production (growth, survival, condition and yield). Significant correlations were detected between fish production indicators and several water chemistry and biota (zooplankton and chironomids) parameters. However, these were not consistent across all three species of fish. These results indicated that the interactions between water chemistry, biota and fish were complex, and that combinations of these parameters, along with other factors not included in the present study, may influence fish production in these ponds. The present study, showed that more stringent monitoring of fry rearing ponds, especially water quality, zooplankton and benthos communities and fish, combined with an associated increase in understanding of the pond ecosystem, can lead to substantial improvements in pond productivity and associated fish production. In the present study this has resulted in a general increase in fish survival rates, which became less variable or more predictable in nature. The value of such knowledge can provide managers with a more predicative capacity to estimate production of ponds in support of stock enhancement programs and provision of juvenile for aquaculture grow-out.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

There is growing recognition of the important roles played by predators in regulating ecosystems and sustaining biodiversity. Much attention has focused on the consequences of predator-regulation of herbivore populations, and associated trophic cascades. However apex predators may also control smaller ‘mesopredators’ through intraguild interactions. Removal of apex predators can result in changes to intraguild interactions and outbreaks of mesopredators (‘mesopredator release’), leading in turn to increased predation on smaller prey. Here we provide a review and synthesis of studies of predator interactions, mesopredator release and their impacts on biodiversity. Mesopredator suppression by apex predators is widespread geographically and taxonomically. Apex predators suppress mesopredators both by killing them, or instilling fear, which motivates changes in behaviour and habitat use that limit mesopredator distribution and abundance. Changes in the abundance of apex predators may have disproportionate (up to fourfold) effects on mesopredator abundance. Outcomes of interactions between predators may however vary with resource availability, habitat complexity and the complexity of predator communities. There is potential for the restoration of apex predators to have benefits for biodiversity conservation through moderation of the impacts of mesopredators on their prey, but this requires a whole-ecosystem view to avoid unforeseen negative effects.

‘Nothing has changed since I began.

My eye has permitted no change.

I am going to keep things like this.’

From ‘Hawk Roosting’, by Ted Hughes.