958 resultados para tricalcium phosphate


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The biological response following subcutaneous and bone implantation of beta-wollastonite(beta-W)-doped alpha-tricalcium phosphate bioceramics in rats was evaluated. Tested materials were: tricalciurn phosphate (TCP), consisting of a mixture of alpha- and beta-polymorphs; TCP doped with 5 wt. % of beta-W (TCP5W), composed of alpha-TCP as only crystalline phase; and TCP doped with 15 wt. % of beta-W (TCP15), containing crystalline alpha-TCP and beta-W. Cylinders of 2x1 mm were implanted in tibiae and backs of adult male Rattus norvegicus, Holtzman rats. After 7, 30 and 120 days, animals were sacrificed and the tissue blocks containing the implants were excised, fixed and processed for histological examination. TCP, TCP5W and TCP15W implants were biocompatible but neither bioactive nor biodegradable in rat subcutaneous tissue. They were not osteoinductive in connective tissue either. However, in rat bone tissue beta-W-doped alpha-TCP implants (TCP5W and TCP15W) were bioactive, biodegradable and osteoconductive. The rates of biodegradation and new bone formation observed for TCP5W and TCP15W implants in rat bone tissue were greater than for non-doped TCP.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: To evaluate the macroscopy, microstructure, and tissue reaction of a double-setting a-tricalcium phosphate bone cement used as an intraocular implant in rabbits.Methods: the internal and external surface of the double-setting a-tricalcium phosphate implant was analyzed macroscopically and by scanning electron microscopy. Twelve New Zealand rabbits received 12-mm implants made of double-setting alpha-tricalcium phosphate cement after unilateral evisceration. Clinical evaluation was performed daily for the first 15 days after surgery and at 15-day intervals until the end of the study period. For histopathologic analysis, 3 animals per experimental period were submitted to enucleation at 15, 45, 90, and 180 days.Results: on gross inspection, the external surface of the implant was solid, smooth, and compact. The microarchitecture was characterized by the formation of columns of hexagonal crystals with interconnecting channels forming micropores. No wound dehiscence, signs of infection, or implant extrusion were observed in any animal throughout the study period. Histologic examination revealed the formation of fibrovascular tissue surrounding the implants, and there were signs of minimal integration of the surface limiting the fibrocellular cap with the space previously occupied by the implant.Conclusions: the double-setting alpha-tricalcium phosphate implant behaved as an inert and nonintegratable material. The lack of incorporation of this material by fibrovascular tissue is related to its characteristics of compactness and high resistance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The biological response following subcutaneous and bone implantation of β-wollastonite(β-W)-doped α-tricalcium phosphate bioceramics in rats was evaluated. Tested materials were: tricalcium phosphate (TCP), consisting of a mixture of α- and β-polymorphs; TCP doped with 5 wt. % of β-W (TCP5W), composed of α-TCP as only crystalline phase; and TCP doped with 15 wt. % of β-W (TCP 15), containing crystalline α-TCP and β-W. Cylinders of 2×1 mm were implanted in tibiae and backs of adult male Rattus norvegicus, Holtzman rats. After 7, 30 and 120 days, animals were sacrificed and the tissue blocks containing the implants were excised, fixed and processed for histological examination. TCP, TCP5W and TCP15W implants were biocompatible but neither bioactive nor biodegradable in rat subcutaneous tissue. They were not osteoinductive in connective tissue either. However, in rat bone tissue β-W-doped α-TCP implants (TCP5W and TCP 15W) were bioactive, biodegradable and osteoconductive. The rates of biodegradation and new bone formation observed for TCP5W and TCP15W implants in rat bone tissue were greater than for non-doped TCP.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this study was to evaluate the macroscopy and microstructure of a double setting alpha-tricalcium phosphate bone cement sphere provided with interconnection channels (alpha-TCP-i), as well as the integration of the implant with the rabbits' orbital tissue, through macroscopic analysis and histopathology. The external and internal surfaces of the alpha-TCP-i were evaluated macroscopically and by electron microscopy. Twelve New Zealand rabbits received 12mm implants of alpha-TCP-i following enucleation of the left eye. The clinical assessment was undertaken daily during the first 15 days, followed by fortnightly assessment until the end of the study period. For the morphological analysis, exenteration was performed in 3 animals per experimental period (15, 45, 90 and 180 days). The external and internal surfaces of the implant appeared solid, smooth and compact, with six channels which interconnected centrally. The micro-architecture was characterized by the formation of columns of hexagonal crystals. No signs of infection, exposure, dehiscence of sutures or extrusion of the implant were noted in any of the animals during the entire period of the study. The morphological evaluation demonstrated the presence of a thin capsule around the implant, from whence appeared fibro-vascular projections, which penetrated it through the interconnecting channels. In the first days after the insertion of the implant, an intense inflammatory reaction was noted. At 180 days, however, there were no signs of inflammation. The alpha-tricalcium phosphate cement implant was well tolerated in this rabbit model and appeared to be relatively inert with some fibrovascular ingrowth through the large channels.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The correction of bone defects can be performed using autogenous or alloplastic materials, such as beta-tricalcium phosphate (β-TCP). This study compared the changes in bone volume (CBV) after maxillary sinus lifting using autogenous bone (n=12), autogenous bone associated with β-TCP 1:1 (ChronOS; DePuy Synthes, Paoli, CA, USA) (n=9), and β-TCP alone (n=11) as grafting material, by means of cone beam computed tomography (CBCT). CBV was evaluated by comparing CBCT scans obtained in the immediate postoperative period (5-7 days) and at 6 months postoperative in each group using OsiriX software (OsiriX Foundation, Geneva, Switzerland). The results showed an average resorption of 45.7±18.6% for the autogenous bone group, 43.8±18.4% for the autogenous bone+β-TCP group, and 38.3±16.6% for the β-TCP group. All bone substitute materials tested in this study presented satisfactory results for maxillary sinus lifting procedures regarding the maintenance of graft volume during the healing phase before the insertion of implants, as assessed by means of CBCT.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: The aim of the study is to clinically and histologically evaluate the healing of advanced intrabony defects treated with open flap debridement and the adjunct implantation of granular beta tricalcium phosphate (beta-TCP). METHODS: Five patients, each displaying advanced combined 1- and 2-wall intrabony defects around teeth scheduled for extraction or root resection, were recruited. Approximately 6 months after surgery, the teeth or roots were removed together with a portion of their surrounding soft and hard tissues and processed for histologic evaluation. RESULTS: The mean probing depth (PD) was reduced from 10.8 +/- 2.3 mm presurgically to 4.6 +/- 2.1 mm, whereas a mean clinical attachment level (CAL) gain of 5.0 +/- 0.7 mm was observed. The increase in gingival recession was 1.2 +/- 3.2 mm. The histologic evaluation indicated the formation of new cellular cementum with inserting collagen fibers to a varying extent (mean: 1.9 +/- 0.7 mm; range: 1.2 to 3.03 mm) coronal to the most apical extent of the root instrumentation. The mean new bone formation was 1.0 +/- 0.7 mm (range: 0.0 to 1.9 mm). In most specimens, beta-TCP particles were embedded in the connective tissue, whereas the formation of a mineralized bone-like or cementum-like tissue around the particles was only occasionally observed. CONCLUSION: The present data indicates that treatment of intrabony periodontal defects with this beta-TCP may result in substantial clinical improvements such as PD reduction and CAL gain, but this beta-TCP does not seem to enhance the regeneration of cementum, periodontal ligament, and bone.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: The purpose was to qualitatively and quantitatively compare the bone formation and graft resorption of two different bone substitutes used in both orthopedic and oral surgery, with autogenous bone as a positive control. MATERIALS AND METHODS: Three standardized bone defects were prepared in both mandibular angles of 12 adult minipigs. The defects were grafted with either autograft, anorganic bovine bone (ABB), or synthetic beta-tricalcium phosphate (beta-TCP). Sacrifice was performed after 1, 2, 4, and 8 weeks for histologic and histomorphometric analysis. RESULTS: At 2 weeks, more new bone formation was seen in defects filled with autograft than with ABB (P approximately 0.0005) and beta-TCP (P approximately 0.002). After 4 weeks, there was no significant difference between beta-TCP and the two other materials. Defects grafted with ABB still exhibited less bone formation as compared with autograft (P approximately 0.004). At 8 weeks, more bone formation was observed in defects grafted with autograft (P approximately 0.003) and beta-TCP (P approximately 0.00004) than with ABB. No difference could be demonstrated between beta-TCP and autograft. beta-TCP resorbed almost completely over 8 weeks, whereas ABB remained stable. CONCLUSION: Both bone substitutes seemed to decelerate bone regeneration in the early healing phase as compared with autograft. All defects ultimately regenerated with newly formed bone and a developing bone marrow. The grafting materials showed complete osseous integration. Both bone substitutes may have a place in reconstructive surgery where different clinical indications require differences in biodegradability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Focal osteochondral defects are still a challenging problem in joint surgery. We have developed a two-layered implant consisting of a basal porous beta-tricalcium phosphate (TCP) for bone reconstruction and a superficial fibrous collagen type I/III layer for cartilage regeneration. Fifty-four osteochondral defects in the trochlear groove of 27 Göttinger Minipigs were created and either left untreated, treated with the implant alone, or the implant augmented with an additional growth factor mixture, which was assumed to stimulate cell and tissue differentiation. Follow-up was 6, 12 and 52 weeks with n=6 for each group. The repair tissue was evaluated for its gross appearance and biomechanical properties. Histological sections were semi-quantitatively scored for their histomorphological structure. Treatment with the two-layered implant improved defect filling and subchondral bone repair at 6 and 12 weeks follow-up. The TCP was replaced by cancellous bone at 52 weeks. Cartilage repair tissue mainly consisted of fibrocartilage and showed a moderate cell density up to the joint surface. Growth factor treatment improved the mechanical and histomorphological properties of the cartilage repair tissue at 12, but not at 52 weeks postoperatively. In conclusion, the two-layered collagen-TCP implant augmented with chondroinductive growth factors seems a promising new option for the treatment of deep osteochondral defects in joint surgery.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND The purpose of the present study is to evaluate the 10-year results following treatment of intrabony defects treated with an enamel matrix protein derivative (EMD) combined with either a natural bone mineral (NBM) or β-tricalcium phosphate (β-TCP). METHODS Twenty-two patients with advanced chronic periodontitis and displaying one deep intrabony defect were randomly treated with a combination of either EMD + NBM or EMD + β-TCP. Clinical evaluations were performed at baseline and at 1 and 10 years. The following parameters were evaluated: plaque index, bleeding on probing, probing depth, gingival recession, and clinical attachment level (CAL). The primary outcome variable was CAL. RESULTS The defects treated with EMD + NBM demonstrated a mean CAL change from 8.9 ± 1.5 mm to 5.3 ± 0.9 mm (P <0.001) and to 5.8 ± 1.1 mm (P <0.001) at 1 and 10 years, respectively. The sites treated with EMD + β-TCP showed a mean CAL change from 9.1 ± 1.6 mm to 5.4 ± 1.1 mm (P <0.001) at 1 year and 6.1 ± 1.4 mm (P <0.001) at 10 years. At 10 years two defects in the EMD + NBM group had lost 2 mm, whereas two other defects had lost 1 mm of the CAL gained at 1 year. In the EMD + β-TCP group three defects had lost 2 mm, whereas two other defects had lost 1 mm of the CAL gained at 1 year. Compared with baseline, at 10 years, a CAL gain of ≥3 mm was measured in 64% (i.e., seven of 11) of the defects in the EMD + NBM group and in 82% (i.e., nine of 11) of the defects in the EMD + β-TCP group. No statistically significant differences were found between the 1- and 10-year values in either of the two groups. Between the treatment groups, no statistically significant differences in any of the investigated parameters were observed at 1 and 10 years. CONCLUSION Within their limitations, the present findings indicate that the clinical improvements obtained with regenerative surgery using EMD + NBM or EMD + β-TCP can be maintained over a period of 10 years.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Tissue engineering deals with the regeneration of tissues for bone repair, wound healing, drug delivery, etc., and a highly porous 3D artificial scaffold is required to accommodate the cells and direct their growth. We prepared 3D porous calcium phosphate ((hydroxyapatite/beta-tricalcium phosphate)/agarose, (HAp/beta-TCP)/agarose) composite scaffolds by sol-gel technique with water (WBS) and ethanol (EBS) as solvents. The crystalline phases of HAp and beta-TCP in the scaffolds were confirmed by X-ray diffraction (XRD) analysis. The EBS had reduced crystallinity and crystallite size compared to WBS. WBS and EBS revealed interconnected pores of 1 mu m and 100 nm, respectively. The swelling ratio was higher for EBS in water and phosphate buffered saline (PBS). An in vitro drug loading/release experiment was carried out on the scaffolds using gentamicin sulphate (GS) and amoxicillin (AMX). We observed initial burst release followed by sustained release from WBS and EBS. In addition, GS showed more extended release than AMX from both the scaffolds. GS and AMX loaded scaffolds showed greater efficacy against Pseudomonas than Bacillus species. WBS exhibited enhanced mechanical properties, wettability, drug loading and haemocompatibility compared to EBS. In vitro cell studies showed that over the scaffolds, MC3T3 cells attached and proliferated and there was a significant increase in live MC3T3 cells. Both scaffolds supported MC3T3 proliferation and mineralization in the absence of osteogenic differentiation supplements in media which proves the scaffolds are osteoconducive. Microporous scaffolds (WBS) could assist the bone in-growth, whereas the presence of nanopores (EBS) could enhance the degradation process. Hence, WBS and EBS could be used as scaffolds for tissue engineering and drug delivery. This is a cost effective technique to produce scaffolds of degradable 3D ceramic-polymer composites.