21 resultados para tribofilm


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This licentiate thesis has the main focus on evaluation of the wear of coated and uncoated polycrystalline cubic boron nitride cutting tool used in cutting operations against hardened steel. And to exam the surface finish and integrity of the work material used. Harder work material, higher cutting speed and cost reductions result in the development of harder and more wear resistance cutting tools. Although PCBN cutting tools have been used in over 30 years, little work have been done on PVD coated PCBN cutting tools. Therefore hard turning and hard milling experiments with PVD coated and uncoated cutting tools have been performed and evaluated. The coatings used in the present study are TiSiN and TiAlN. The wear scar and surface integrity have been examined with help of several different characterization techniques, for example scanning electron microscopy and Auger electron spectroscopy.   The results showed that the PCBN cutting tools used displayed crater wear, flank wear and edge micro chipping. While the influence of the coating on the crater and flank wear was very small and the coating showed a high tendency to spalling. Scratch testing of coated PCBN showed that, the TiAlN coating resulted in major adhesive fractures. This displays the importance of understanding the effect of different types of lapping/grinding processes in the pre-treatment of hard and super hard substrate materials and the amount and type of damage that they can create. For the cutting tools used in turning, patches of a adhered layer, mainly consisting of FexOy were shown at both the crater and flank. And for the cutting tools used in milling a tribofilm consisting of SixOy covered the crater. A combination of tribochemical reactions, adhesive wear and mild abrasive wear is believed to control the flank and crater wear of the PCBN cutting tools. On a microscopic scale the difference phases of the PCBN cutting tool used in turning showed different wear characteristics. The machined surface of the work material showed a smooth surface with a Ra-value in the range of 100-200 nm for the turned surface and 100-150 nm for the milled surface. With increasing crater and flank wear in combination with edge chipping the machined surface becomes rougher and showed a higher Ra-value. For the cutting tools used in milling the tendency to micro edge chipping was significant higher when milling the tools steels showing a higher hard phase content and a lower heat conductivity resulting in higher mechanical and thermal stresses at the cutting edge.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Due to ever increasing demands on lubricants, such as increased service intervals, reduced volumes and reduced emissions, there is a need to develop new lubricants and improved wear additives. Ionic liquids (ILs) are room temperature molten salts that have recently been shown to offer many advantages in this area. The application of ILs as lubricants in a diverse range of systems has found that these materials can show remarkable protection against wear and significantly reduce friction in the neat state. Recently, some researchers have shown that a small family of ILs can also be incorporated into non-polar base oils, replacing traditional anti-wear additives, with excellent performance of the neat IL being maintained. ILs consist of large asymmetrical ions that may readily adsorb onto a metal surface and produce a thin, protective film under boundary lubrication conditions. Under extreme pressure conditions, certain IL compounds can also react to form a protective tribofilm, in particular when fluorine, phosphorus or boron atoms are present in the constituent ions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A biocompatible ionic liquid, tributyl(methyl)phosphonium diphenylphosphate, P1444DPP (IL1) was investigated as an antiwear additive and compared against Amine Phosphate (AP), one of the commonly used conventional antiwear additives in biodegradable lubricants. IL1 showed excellent antiwear performance, using a pin-on-disc tribometer, when blended in biodegradable base stocks. The steel balls after the test were analyzed using SEM-EDS techniques which confirmed the presence of phosphorous. The tribological properties under reciprocating conditions were also carried out using Optimol SRV oscillating friction and wear tester and the steel discs were observed under Atomic Force Microscopy (AFM), to show the buildup of tribofilm formed by IL1. The thickness of the lubricant film was confirmed by Elastohydrodynamic (EHD) Ultra Thin Film Measurement System. It was observed that IL1 has a better film forming ability than AP. © 2014 Elsevier Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tribological behavior of de-agglomerated and exfoliated active molybdenum disulfide (MoS2) nanosheets as additives in lithium based grease was investigated. MoS2 nanosheets were prepared by mechano-chemical process in a planetary ball mill with selective organic molecules particularly lecithin (a source of phosphorus (exfoliating/stabilizing agent)) along with antiwear additives (ZDDP). Tribological evolutions show significant influence of MoS2 nanosheets on the friction coefficient, WSD (wear scar diameter) and extreme pressure properties of lithium based grease. The elemental composition analysis of the wear track shows the presence of Mo, S, and P on the surface protective layer, revealing the formation of a tribofilm containing MoS2 nanosheets along with phosphorus based moieties.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The efficacy of ionic liquids (ILs) as lubricant additives to a model base oil has been probed at the nanoscale and macroscale as a function of IL concentration using the same materials. Silica surfaces lubricated with mixtures of the IL trihexyl(tetradecyl)phosphonium bis(2,4,4-trimethylpentyl)phosphinate and hexadecane are probed using atomic force microscopy (AFM) (nanoscale) and ball-on-disc tribometer (macroscale). At both length scales the pure IL is a much more effective lubricant than hexadecane. At the nanoscale, 2.0 mol% IL (and above) in hexadecane lubricates the silica as well as the pure IL due to the formation of a robust IL boundary layer that separates the sliding surfaces. At the macroscale the lubrication is highly load dependent; at low loads all the mixtures lubricate as effectively as the pure IL, whereas at higher loads rather high concentrations are required to provide IL like lubrication. Wear is also pronounced at high loads, for all cases except the pure IL, and a tribofilm is formed. Together, the nano- and macroscales results reveal that the IL is an effective lubricant additive - it reduces friction - in both the boundary regime at the nanoscale and mixed regime at the macroscale.