908 resultados para trench-slope basin


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Eastern Tianshan area, a Paleozoic complex trench-arc-basin system, experienced multi-period sudbuction and collision in geological history. A large number of Early Permian mafic-ultramafic intrusions emplaced along deep faults in post-collision extension tectonic stage and hosted a series of magmatic Cu-Ni sulfide deposits. This paper sets newly-discovered Tianyu magmatic Cu-Ni sulfide deposit related to small intrusion as an example. On basis of the study of ore-forming mechanism of Cu-Ni deposit, we compared PGE content and discussed enrichment mechanism and regularity of mafic-ultramafic rocks and ores in Jueluotage tectonic belt and Central Tianshan Massif. PGE and Cu, Ni, S contents correlate with each other. PGE is mainly controlled by S content.Samilar PGE distribution patterns of mafic-ultramafic show that complex originated from the same parental magma; Pd/Ir and Ni/Cu ratios indicate that high-Mg basaltic magma and deep sulfide segregation happened during magma evolution process. PGE and Cu-Ni ores are enriched in liquid sulfide and only individual samples completely control by monosulfide solid solution. Comparison of all control factors, early segregation of sulfide and quality of supply of magma may be the key factors leading to the Eastern Tianshan magmatic copper-nickel sulfide deposits don’t reach PGE grade, but we do not rule out the possibility of occurrence continuous mafic-ultramafic rocks and PGE-rich layer in deep.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The oceanographic and tectonic conditions of accretionary margins are well-suited for several potential processes governing methane generation, storage and release. To identify the relevant methane evolution pathways in the northern Cascadia accretionary margin, a four-site transect was drilled during Integrated Ocean Drilling Program Expedition 311. The d13C values of methane range from a minimum value of -82.2 per mil on an uplifted ridge of accreted sediment near the deformation front (Site U1326, 1829 mbsl, meters below sea level) to a maximum value of -39.5 per mil at the most landward location within an area of steep canyons near the shelf edge (Site U1329, 946 mbsl). An interpretation based solely on methane isotope values might conclude the 13C-enrichment of methane indicates a transition from microbially- to thermogenically-sourced methane. However, the co-existing CO2 exhibits a similar trend of 13C-enrichment along the transect with values ranging from -22.5 per mil to +25.7 per mil. The magnitude of the carbon isotope separation between methane and CO2 (Ec = 63.8 ± 5.8) is consistent with isotope fractionation during microbially mediated carbonate reduction. These results, in conjunction with a transect-wide gaseous hydrocarbon content composed of > 99.8% (by volume) methane and uniform dDCH4 values (-172 per mil ± 8) that are distinct from thermogenic methane at a seep located 60 km from the Expedition 311 transect, suggest microbial CO2 reduction is the predominant methane source at all investigated sites. The magnitude of the intra-site downhole 13C-enrichment of CO2 within the accreted ridge (Site U1326) and a slope basin nearest the deformation front (Site U1325, 2195 mbsl) is ~ 5 per mil. At the mid-slope site (Site U1327, 1304 mbsl) the downhole 13C-enrichment of the CO2 is ~ 25 per mil and increases to ~ 40 per mil at the near-shelf edge Site U1329. This isotope fractionation pattern is indicative of more extensive diagenetic alteration at sites with greater 13C-enrichment. The magnitude of the 13C-enrichment of CO2 correlates with decreasing sedimentation rates and a diminishing occurrence of stratigraphic gas hydrate. We suggest the decreasing sedimentation rates increase the exposure time of sedimentary organic matter to aerobic and anaerobic degradation, during burial, thereby reducing the availability of metabolizable organic matter available for methane production. This process is reflected in the occurrence and distribution of gas hydrate within the northern Cascadia margin accretionary prism. Our observations are relevant for evaluating methane production and the occurrence of stratigraphic gas hydrate within other convergent margins.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We collected 20 carbonate nodules from the inner trench slope deposits of the Middle America Trench area off Mexico. Carbonate nodules are found only within the methane-rich layer beneath the mixed layer of methane and hydrogen sulfide. They have been investigated by microscopic, scanning electron microscopic (SEM), X-ray diffraction, and stable isotopic analytical methods. Calcite, magnesian calcite, dolomite, and rhodochrosite were recognized as carbonate minerals. Each carbonate nodule is usually represented by single species of carbonate minerals. Carbonate nodules are subdivided into micrite nodules and recrystallized nodules according to textural features. The carbonate crystallites in each micrite nodule are equidimensional. Their sizes range from several to 30 µm, as revealed by SEM micrographs. The chemical composition of calcite is changed from pure calcite to high magnesian calcite, as shown by the shift of the (104) reflection in X-ray diffraction patterns. Fe substitution for Ca in dolomite was also observed. Carbon isotopic composition shows an unusually wide range - from -42.9 to +13.5 per mil - in PDB scale, whereas oxygen isotopic compositions of almost all the carbonate nodules are constantly enriched in 18O from +3.4 to +7.60 per mil in PDB scale. These wide variations in carbon isotopic composition indicate several sources for the carbon in carbonate nodules. Carbon with a negative d13C value was derived from biochemical oxidation of methane with a negative d13C value. On the other hand, carbon with positive d13C value was probably formed during methane production in an anoxic condition.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Acetate and hydrogen concentrations in pore fluids were measured in samples taken at seven sites from southern Hydrate Ridge (SHR) offshore Oregon, USA. Acetate concentrations ranged from 3.17 to 2515 µM. The maximum acetate concentrations occurred at Site 1251, which was drilled on a slope basin to the east of SHR at depths just above the bottom-simulating reflector (BSR) that marks the boundary of gas hydrate stability. Acetate maxima and localized high acetate concentrations occurred at the BSR at all sites and frequently corresponded with areas of gas hydrate accumulation, suggesting an empirical relationship. Acetate concentrations were typically at a minimum near the seafloor and above the sulfate/methane interface, where sulfate-reducing bacteria may consume acetate. Hydrogen concentrations in pressure core samples ranged from 16.45 to 1036 parts per million by volume (ppmv). In some cases, hydrogen and acetate concentrations were elevated concurrently, suggesting a positive correlation. However, sampling of hydrogen was limited in comparison to acetate, so any relationships between the two analytes, if present, were difficult to discern.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The chemical and isotopic compositions of sedimentary organic matter (SOM) from two mid-slope sites of the northern Cascadia margin were investigated during Integrated Ocean Drilling Program (IODP) Expedition 311 to elucidate the organic matter origins and identify potential microbial contributions to SOM. Gas hydrate is present at both locations (IODP Sites U1327 and U1328), with distinct patterns of near-seafloor structural accumulations at the cold seep Site U1328 and deeper stratigraphic accumulations at the slope-basin Site U1327. Source characterization and evidence that some components of the organic matter have been diagenetically altered are determined from the concentrations and isotopic compositions of hydrocarbon biomarkers, total organic carbon (TOC), total nitrogen (TN) and total sulfur (TS). The carbon isotopic compositions of TOC (d13C TOC = -26 to -22 per mil) and long-chain n-alkanes (C27, C29 and C31, d13C = -34 to -29 per mil) suggest the organic matter at both sites is a mixture of 1) terrestrial plants that employ the C3 photosynthetic pathway and 2) marine algae. In contrast, the d15N TN values of the bulk sediment (+4 to +8 per mil) are consistent with a predominantly marine source, but these values most likely have been modified during microbial organic matter degradation. The d13C values of archaeal biomarker pentamethylicosane (PMI) (-46.4 per mil) and bacterial-sourced hopenes, diploptene and hop-21-ene (-40.9 to -34.7 per mil) indicate a partial contribution from methane carbon or a chemoautotrophic pathway. Our multi-isotope and biomarker-based conclusions are consistent with previous studies, based only on the elemental composition of bulk sediments, that suggested a mixed marine-terrestrial organic matter origin for these mid-slope sites of the northern Cascadia margin.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

"Bound" and "free" solvent-extractable lipids have been examined from Sections 440A-7-6, 440B-3-5, 440B-8-4, 440B-68-2, and 436-11-4. The compound classes studied include aliphatic and aromatic hydrocarbons, ketones, alcohols, and carboxylic acids. Carotenoids and humic acids have also been examined. The quantitative results are considered in terms of input indicators, diagenesis parameters, and structural classes. A difference in input is deduced across the Japan Trench, with a higher proportion of autochthonous components on the western inner trench slope compared with the more easterly, outer trench, wall and greater input in the early Pleistocene than in the Miocene. A variety of diagenetic transformations is observed at Site 440 as sample depth increases. Results are compared with those of samples from Atlantic Cretaceous sediments and from the Walvis Bay high productivity area.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Interstitial water chemistry has proved to be a sensitive indicator for early diagenetic reactions, particularly those related to organic matter oxidation. Downhole chemical variations in the pore waters from Deep Sea Drilling Project Holes 496 and 497 on the Middle America Trench slope off Guatemala are anomalous because both salinity and chlorinity show strong decreases to half the values of seawater, and d18O values become positive (maximum of about +2.5% at the bottom of the holes). These observations are explained in terms of dilution of pore waters after retrieval as a result of decomposition of the gas hydrates before removal of pore waters by shipboard squeezing techniques. In all holes, except Hole 495 (drilled in pelagic sediments), decomposition of organic matter leads to rapid sulfate depletion and subsequent methane generation. Associated with methane generation are large increases in alkalinity and dissolved ammonia. The latter component causes ion exchange reactions with clay minerals, which results in maxima in magnesium and perhaps potassium. At greater depths, as yet unidentified reactions cause the removal of magnesium. Especially in the deeper Trench Sites 499 and 500, rapid variations in calcium, magnesium, and alkalinity occur in turbidite sequences.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Sediments at the southern summit of Hydrate Ridge display two distinct modes of gas hydrate occurrence. The dominant mode is associated with active venting of gas exsolved from the accretionary prism and leads to high concentrations (15%-40% of pore space) of gas hydrate in seafloor or near-surface sediments at and around the topographic summit of southern Hydrate Ridge. These near-surface gas hydrates are mainly composed of previously buried microbial methane but also contain a significant (10%-15%) component of thermogenic hydrocarbons and are overprinted with microbial methane currently being generated in shallow sediments. Focused migration pathways with high gas saturation (>65%) abutting the base of gas hydrate stability create phase equilibrium conditions that permit the flow of a gas phase through the gas hydrate stability zone. Gas seepage at the summit supports rapid growth of gas hydrates and vigorous anaerobic methane oxidation. The other mode of gas hydrate occurs in slope basins and on the saddle north of the southern summit and consists of lower average concentrations (0.5%-5%) at greater depths (30-200 meters below seafloor [mbsf]) resulting from the buildup of in situ-generated dissolved microbial methane that reaches saturation levels with respect to gas hydrate stability at 30-50 mbsf. Net rates of sulfate reduction in the slope basin and ridge saddle sites estimated from curve fitting of concentration gradients are 2-4 mmol/m**3/yr, and integrated net rates are 20-50 mmol/m**2/yr. Modeled microbial methane production rates are initially 1.5 mmol/m**3/yr in sediments just beneath the sulfate reduction zone but rapidly decrease to rates of <0.1 mmol/m**3/yr at depths >100 mbsf. Integrated net rates of methane production in sediments away from the southern summit of Hydrate Ridge are 25-80 mmol/m**2/yr. Anaerobic methane oxidation is minor or absent in cored sediments away from the summit of southern Hydrate Ridge. Ethane-enriched Structure I gas hydrate solids are buried more rapidly than ethane-depleted dissolved gas in the pore water because of advection from compaction. With subsidence beneath the gas hydrate stability zone, the ethane (mainly of low-temperature thermogenic origin) is released back to the dissolved gas-free gas phases and produces a discontinuous decrease in the C1/C2 vs. depth trend. These ethane fractionation effects may be useful to recognize and estimate levels of gas hydrate occurrence in marine sediments.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Trace fossils are in places abundant in cores from DSDP Leg 56 sites. They are particularly rich in the pelagic-clay sequence at Site 436. Some significant trace fossils, including Zoophycos, Teichichnus, Chondrites, rind and solid burrows, and pellet-armored rods, are described. The ichnofauna, except for pellet-armored rods in diatomaceous mudstone of the landward trench slope, is characterized by cosmopolitan bathyal to abyssal forms.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We report iodine and bromine concentrations in a total of 256 pore water samples collected from all nine sites of Ocean Drilling Program Leg 204, Hydrate Ridge. In a subset of these samples, we also determined iodine ages in the fluids using the cosmogenic isotope 129I (T1/2 = 15.7 Ma). The presence of this cosmogenic isotope, combined with the strong association of iodine with methane, allows the identification of the organic source material responsible for iodine and methane in gas hydrates. In all cores, iodine concentrations were found to increase strongly with depth from values close to that of seawater (0.0004 mM) to concentrations >0.5 mM. Several of the cores taken from the northwest flank of the southern summit show a pronounced maximum in iodine concentrations at depths between 100 and 150 meters below seafloor in the layer just above the bottom-simulating reflector. This maximum is especially visible at Site 1245, where concentrations reach values as high as 2.3 mM, but maxima are absent in the cores taken from the slope basin sites (Sites 1251 and 1252). Bromine concentrations follow similar trends, but enrichment factors for Br are only 4-8 times that of seawater (i.e., considerably lower than those for iodine). Iodine concentrations are sufficient to allow isotope determinations by accelerator mass spectrometry in individual pore water samples collected onboard (~5 mL). We report 129I/I ratios in a few samples from each core and a more complete profile for one flank site (Site 1245). All 129I/I ratios are below the marine input ratio (Ri = 1500x10**-15). The lowest values found at most sites are between 150 and 250x10**-15, which correspond to minimum ages between 40 and 55 Ma, respectively. These ages rule out derivation of most of the iodine (and, by association, of methane) from the sediments hosting the gas hydrates or from currently subducting sediments. The iodine maximum at Site 1245 is accompanied by an increase in 129I/I ratios, suggesting the presence of an additional source with an age younger than 10 Ma; there is indication that younger sources also contribute at other sites, but data coverage is not yet sufficient to allow a definitive identification of sources there. Likely sources for the older component are formations of early Eocene age close to the backstop in the overriding wedge, whereas the younger sources might be found in recent sediments underlying the current locations of the gas hydrates.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The sandstone petrology of Leg 66 samples provides insights into changes through time in the geology of the source regions along the Guerrero portion of the Middle America continental margin. This in turn constrains possible models of the evolution of the Middle America Trench (e.g., de Czerna, 1971; Malfait and Dinkleman, 1972; Karig, 1974). Primarily medium-grained sands and sandstones, representing the widest variety available of trench/trench slope settings and ages, were analyzed in both light and heavy mineral studies. Standard techniques were used as much as possible in order to compare results from other margins and from ancient rocks.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Eleven serpentine samples from DSDP Leg 84 and four serpentinized ultramafic samples from Costa Rica and Guatemala were described and their relict mineral compositions measured by electron microprobe to try to determine the origin of the Leg 84 serpentinites and their relationship to the ultramafic rocks of the onshore ophiolites. The Leg 84 samples comprise more than 90% secondary minerals, principally serpentine, with hematitic and opaque oxides, and minor talc and smectites. Four distinct textural types can be identified according to the distribution of opaque phases and smectite. Remnants of spinel, olivine, orthopyroxene, and clinopyroxene occur variously in the samples; spinal occurs in all the samples. Textural evidence suggests that the serpentinites were originally clinopyroxene-bearing harzburgites. Relict mineral compositions are refractory and relatively uniform: olivine, Fo90.6-90.9; orthopyroxene, En90-91; clinopyroxene, Wo47 En50 Fs3; spinels, Cr/Cr + Al = 0.4-0.6. 567A-29-2, 30-35 cm has slightly more magnesian olivines (Fo92) and orthopyroxene, and more aluminous spinels (Cr/Cr + Al = 0.3). These compositions are similar to those inferred for refractory upper-mantle materials and also fall within the range of compositions for relict minerals in abyssal peridotites. They could be of oceanic origin. The onshore samples include serpentinites, a clinopyroxene-bearing harzburgite, and a clinopyroxenite. They too have magnesium-rich silicate assemblages, but relative to the drilled samples have more iron-rich olivines (Fogo) and more aluminous and sodic pyroxenes; spinels which are clearly relicts are very aluminum-rich (Cr/Cr + Al = 0.1-0.25). These samples are most likely mantle materials, but significantly less depleted. Their relationship to the drilled samples is unclear. Serpentinites were the most common basement materials recovered during Leg 84, and there appears to be a bimodal assemblage (basalt/diabase and serpentine) of igneous rocks sampled from the trench slope. Diapirism of serpentine throughout the trench slope and forearc is suggested as an explanation for this distribution of samples.