982 resultados para transport-simulation


Relevância:

40.00% 40.00%

Publicador:

Resumo:

We propose a dynamic mathematical model of tissue oxygen transport by a preexisting three-dimensional microvascular network which provides nutrients for an in situ cancer at the very early stage of primary microtumour growth. The expanding tumour consumes oxygen during its invasion to the surrounding tissues and cooption of host vessels. The preexisting vessel cooption, remodelling and collapse are modelled by the changes of haemodynamic conditions due to the growing tumour. A detailed computational model of oxygen transport in tumour tissue is developed by considering (a) the time-varying oxygen advection diffusion equation within the microvessel segments, (b) the oxygen flux across the vessel walls, and (c) the oxygen diffusion and consumption with in the tumour and surrounding healthy tissue. The results show the oxygen concentration distribution at different time points of early tumour growth. In addition, the influence of preexisting vessel density on the oxygen transport has been discussed. The proposed model not only provides a quantitative approach for investigating the interactions between tumour growth and oxygen delivery, but also is extendable to model other molecules or chemotherapeutic drug transport in the future study.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Noninvasive or minimally invasive identification of sentinel lymph node (SLN) is essential to reduce the surgical effects of SLN biopsy. Photoacoustic (PA) imaging of SLN in animal models has shown its promise for clinical use in the future. Here, we present a Monte Carlo simulation for light transport in the SLN for various light delivery configurations with a clinical ultrasound probe. Our simulation assumes a realistic tissue layer model and also can handle the transmission/reflectance at SLN-tissue boundary due to the mismatch of refractive index. Various light incidence angles show that for deeply situated SLNs the maximum absorption of light in the SLN is for normal incidence. We also show that if a part of the diffused reflected photons is reflected back into the skin using a reflector, the absorption of light in the SLN can be increased significantly to enhance the PA signal. (C) 2013 Society of Photo-Optical Instrumentation Engineers (SPIE)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Monte Carlo modeling of light transport in multilayered tissue (MCML) is modified to incorporate objects of various shapes (sphere, ellipsoid, cylinder, or cuboid) with a refractive-index mismatched boundary. These geometries would be useful for modeling lymph nodes, tumors, blood vessels, capillaries, bones, the head, and other body parts. Mesh-based Monte Carlo (MMC) has also been used to compare the results from the MCML with embedded objects (MCML-EO). Our simulation assumes a realistic tissue model and can also handle the transmission/reflection at the object-tissue boundary due to the mismatch of the refractive index. Simulation of MCML-EO takes a few seconds, whereas MMC takes nearly an hour for the same geometry and optical properties. Contour plots of fluence distribution from MCML-EO and MMC correlate well. This study assists one to decide on the tool to use for modeling light propagation in biological tissue with objects of regular shapes embedded in it. For irregular inhomogeneity in the model (tissue), MMC has to be used. If the embedded objects (inhomogeneity) are of regular geometry (shapes), then MCML-EO is a better option, as simulations like Raman scattering, fluorescent imaging, and optical coherence tomography are currently possible only with MCML. (C) 2014 Society of Photo-Optical Instrumentation Engineers (SPIE)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The statistical behaviours of the instantaneous scalar dissipation rate Nc of reaction progress variable c in turbulent premixed flames have been analysed based on three-dimensional direct numerical simulation data of freely propagating statistically planar flame and V-flame configurations with different turbulent Reynolds number Ret. The statistical behaviours of N c and different terms of its transport equation for planar and V-flames are found to be qualitatively similar. The mean contribution of the density-variation term T1 is positive, whereas the molecular dissipation term (-D2) acts as a leading order sink. The mean contribution of the strain rate term T2 is predominantly negative for the cases considered here. The mean reaction rate contribution T3 is positive (negative) towards the unburned (burned) gas side of the flame, whereas the mean contribution of the diffusivity gradient term (D) assumes negative (positive) values towards the unburned (burned) gas side. The local statistical behaviours of Nc, T1, T2, T 3, (-D2), and f(D) have been analysed in terms of their marginal probability density functions (pdfs) and their joint pdfs with local tangential strain rate aT and curvature km. Detailed physical explanations have been provided for the observed behaviour. © 2014 Y. Gao et al.