946 resultados para transmission-line matrix methods


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a method for analyzing electromagnetic transients using real transformation matrices in three-phase systems considering the presence of ground wires. So, for the Z and Y matrices that represent the transmission line, the characteristics of ground wires are not implied in the values related to the phases. A first approach uses a real transformation matrix for the entire frequency range considered in this case. This transformation matrix is an approximation to the exact transformation matrix. For those elements related to the phases of the considered system, the transformation matrix is composed of the elements of Clarke's matrix. In part related to the ground wires, the elements of the transformation matrix must establish a relationship with the elements of the phases considering the establishment of a single homopolar reference in the mode domain. In the case of three-phase lines with the presence of two ground wires, it is unable to get the full diagonalization of the matrices Z and Y in the mode domain. This leads to the second proposal for the composition of real transformation matrix: obtain such transformation matrix from the multiplication of two real and constant matrices. In this case, the inclusion of a second matrix had the objective to minimize errors from the first proposal for the composition of the transformation matrix mentioned. © 2012 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this paper is to show a methodology to estimate transmission line parameters. The method is applied in a single-phase transmission line using the method of least squares. In this method the longitudinal and transversal parameters of the line are obtained as a function of a set of measurements of currents and voltages (as well as their derivatives with respect to time) at the terminals of the line during the occurrence of a short-circuit phase-ground near the load. The method is based on the assumption that a transmission line can be represented by a single circuit π. The results show that the precision of the method depends on the length of the line, where it has a better performance for short lines and medium length. © 2012 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article shows a transmission line model developed directly in the phase domain. The proposed model is based on the relationships between the phase currents and voltages at both the sending and receiving ends of a single-phase line. These relationships, established using an ABCD matrix, were extended to multi-phase lines. The proposed model was validated by using it to represent a transmission line during short-and open-circuit tests. The results obtained with the proposed model were compared with results obtained with a classical model based on modal decomposition. These comparisons show that proposed model was correctly developed. © 2013 Taylor and Francis Group, LLC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, the transmission-line modeling (TLM) applied to bio-thermal problems was improved by incorporating several novel computational techniques, which include application of graded meshes which resulted in 9 times faster in computational time and uses only a fraction (16%) of the computational resources used by regular meshes in analyzing heat flow through heterogeneous media. Graded meshes, unlike regular meshes, allow heat sources to be modeled in all segments of the mesh. A new boundary condition that considers thermal properties and thus resulting in a more realistic modeling of complex problems is introduced. Also, a new way of calculating an error parameter is introduced. The calculated temperatures between nodes were compared against the results obtained from the literature and agreed within less than 1% difference. It is reasonable, therefore, to conclude that the improved TLM model described herein has great potential in heat transfer of biological systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Magdeburg, Univ., Fak. für Elektrotechnik und Informationstechnik, Diss., 2011

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Now when the technology is fast developing it is very important to investigate new hybrid structures. One way is to use ferrite ferroelectric layered structures. Theoretical and experimental investigation of such structures was made. These structures have advantages of both layers and it is possible to tune the behavior of this structure by external electric and magnetic field. But these structures have some disadvantages connected with presence of thick ferroelectric layer. One way to overcome this problem is to use slotline. So this is another new way to create hybrid ferrite ferroelectric structures, but it is needed to create new theory and find experimental proof that the behavior of these structures can be tuned with external magnetic and electric fields.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper is shown the development of a transmission line, based on discrete circuit elements that provide responses directly in the time domain and phase. This model is valid for ideally transposed rows represent the phases of each of the small line segments are separated in their modes of propagation and the voltage and current are calculated at the modal field. However, the conversion phase-mode-phase is inserted in the state equations which describe the currents and voltages along the line of which there is no need to know the user of the model representation of the theory in the field lines modal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this paper is to present a methodology to analyze a transmission line model used in electromagnetic transitory simulators, called equivalent impedance test. Initially the definition of equivalent impedance reference test is shown. Soon after this methodology is applied to a transmission line model, the Quasi-Modes model. The studies were accomplished in a hypothetical non-transposed three-phase transmission fine of 440 kV. The line length is 500 km, and it was modeled through cascades of pi-circuits (with 50 pi's circuits, each with 10 km length).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this paper is to show an alternative methodology to calculate transmission-line parameters per unit length. With this methodology, the transmission-line parameters can be obtained starting from impedances measured in one terminal of the line. First, the article shows the classical methodology to calculate frequency-dependent transmission-line parameters by using Carson's and Pollaczeck's equations for representing the ground effect and Bessel's functions to represent the skin effect. After that, a new procedure is shown to calculate frequency-dependent transmission-line parameters directly from currents and voltages of an existing line. Then, this procedure is applied in a two-phase and a three-phase transmission line whose parameters have been previously calculated by using the classical methodology. Finally, the results obtained by using the new procedure and by using the classical methodology are compared. The article shows simulations results for a typical frequency spectrum of switching transients (10 Hz to 10 kHz).