930 resultados para transient thermal distortion analysis
Resumo:
Pós-graduação em Engenharia Mecânica - FEG
Resumo:
This paper describes a relatively simple and quick method for implementing aerodynamic heating models into a finite element code for non-linear transient thermal-structural and thermal-structural-vibrational analyses of a Mach 10 generic HyShot scramjet engine. The thermal-structural-vibrational response of the engine was studied for the descent trajectory from 60 to 26 km. Aerodynamic heating fluxes, as a function of spatial position and time for varying trajectory points, were implemented in the transient heat analysis. Additionally, the combined effect of varying dynamic pressure and thermal loads with altitude was considered. This aero-thermal-structural analysis capability was used to assess the temperature distribution, engine geometry distortion and yielding of the structural material due to aerodynamic heating during the descent trajectory, and for optimising the wall thickness, nose radius of leading edge, etc. of the engine intake. A structural vibration analysis was also performed following the aero-thermal-structural analysis to determine the changes in natural frequencies of the structural vibration modes that occur at the various temperatures associated with the descent trajectory. This analysis provides a unique and relatively simple design strategy for predicting and mitigating the thermal-structural-vibrational response of hypersonic engines. (C) 2006 Elsevier SAS. All rights reserved.
Resumo:
In anurans, changes in ambient temperature influence body temperature and, therefore, energy consumption. These changes ultimately affect energy supply and, consequently, heart rate (HR). Typically, anurans living in different thermal environments have different thermal sensitivities, and these cannot be distinguished by changes in HR. We hypothesized that Rhinella jimi (a toad from a xeric environment that lives in a wide range of temperatures) would have a lower thermal sensitivity regarding cardiac control than R. icterica (originally from a tropical forest environment with a more restricted range of ambient temperatures). Thermal sensitivity was assessed by comparing animals housed at 15° and 25°C. Cardiac control was estimated by heart rate variability (HRV) and heart rate complexity (HRC). Differences in HRV between the two temperatures were not significant (P=0.214 for R. icterica and P=0.328 for R. jimi), whereas HRC differences were. All specimens but one R. jimi had a lower HRC at 15°C (all P<0.01). These results indicate that R. jimi has a lower thermal sensitivity and that cardiac control is not completely dependent on the thermal environment because HRC was not consistently different between temperatures in all R. jimi specimens. This result indicates a lack of evolutive trade-offs among temperatures given that heart rate control at 25°C is potentially not a constraint to heart rate control at 15°C.
Resumo:
In this work, the structural, mechanical, diffractometric, and thermal parameters of chitosan-hydroxypropylmethylcellulose (HPMC) films plasticized with sorbitol were studied. Solutions of HPMC (2% w/v) in water and chitosan (2% w/v) in 2% acetic acid solution were prepared. The concentration of sorbitol used was 10% (w/w) to both polymers. This solutions were mixed at different proportions (100/0; 70/30; 50/50; 30/70, and 0/100) of chitosan and HPMC, respectively, and 20 mL was cast in Petri dishes for further analysis of dried films. The miscibility of polymers was assessed by X-ray diffraction, scanning electronic microscopy (SEM), differential scanning calorimetry (DSC), and thermal gravimetric analysis (TGA). The results obtained indicate that the films are not fully miscible at a dry state despite the weak hydrogen bonding between the polymer functional groups.
Resumo:
Three dimensional (3D) composites are strong contenders for the structural applications in situations like aerospace,aircraft and automotive industries where multidirectional thermal and mechanical stresses exist. The presence of reinforcement along the thickness direction in 3D composites,increases the through the thickness stiffness and strength properties.The 3D preforms can be manufactured with numerous complex architecture variations to meet the needs of specific applications.For hot structure applications Carbon-Carbon(C-C) composites are generally used,whose property variation with respect to temperature is essential for carrying out the design of hot structures.The thermomechanical behavior of 3D composites is not fully understood and reported.The methodology to find the thermomechanical properties using analytical modelling of 3D woven,3D 4-axes braided and 3D 5-axes braided composites from Representative Unit Cells(RUC's) based on constitutive equations for 3D composites has been dealt in the present study.High Temperature Unidirectional (UD) Carbon-Carbon material properties have been evaluated using analytical methods,viz.,Composite cylinder assemblage Model and Method of Cells based on experiments carried out on Carbon-Carbon fabric composite for a temparature range of 300 degreeK to 2800degreeK.These properties have been used for evaluating the 3D composite properties.From among the existing methods of solution sequences for 3D composites,"3D composite Strength Model" has been identified as the most suitable method.For thegeneration of material properies of RUC's od 3D composites,software has been developed using MATLAB.Correlaton of the analytically determined properties with test results available in literature has been established.Parametric studies on the variation of all the thermomechanical constants for different 3D performs of Carbon-Carbon material have been studied and selection criteria have been formulated for their applications for the hot structures.Procedure for the structural design of hot structures made of 3D Carbon-Carbon composites has been established through the numerical investigations on a Nosecap.Nonlinear transient thermal and nonlinear transient thermo-structural analysis on the Nosecap have been carried out using finite element software NASTRAN.Failure indices have been established for the identified performs,identification of suitable 3D composite based on parametric studies on strength properties and recommendation of this material for Nosecap of RLV based on structural performance have been carried out in this Study.Based on the 3D failure theory the best perform for the Nosecap has been identified as 4-axis 15degree braided composite.
Resumo:
Dual beam transient thermal lens studies were carried out in rhodamine 6G methanol solutions using 532 nm pulses from a frequency doubled Nd:YAG laser. Analysis of thermal lens signal shows the existence of different nonlinear processes like two photon absorption and three photon absorption phenomena along with one photon absorption. Concentration of the dye in the solution has been found to influence the occurrence of the different processes in a significant way.
Resumo:
Objective: To analyze the effects of thermal cycling on the microtensile shear bond strength of a self-etching and a conventional pit and fissure sealants to dental enamel. Material and Method: Twenty-four healthy human molars extracted for orthodontic reasons, were sectioned in the mesio-distal direction and divided into two groups (n=24) according to the sealant to be applied: GI - conventional sealant Climpro (3M/ESPE) and GII - self-etching sealant Enamel Loc (Premier Dental). The sealants were applied on flattened enamel in matrixes 1 mm in diameter, in accordance with the manufacturers' recommendations. The specimens were stored in distilled water at 37°C for 24 hours. After this, half the samples of both groups were submitted to 500 thermal cycles in 30s baths at temperatures between 5 and 55°C. Forty-eight hours after the samples were made, the microtensile shear test was performed in an Instron 4411 test machine, with a stainless steel wire with a cylindrical cross section of 0.2mm in diameter at a constant speed of 0.5mm/s. The bond strength values were submitted to ANOVA for 2 factors and the fracture patterns were examined under an optical microscope at 65X magnification. Results: Thermal cycling did not influence the bond strength of the two sealants. The conventional sealant Climpro presented a statistically higher microtensile shear bond strength (11.72MPa, 11.34MPa with and without cycling, respectively) than the self-etching sealant Enamel Loc (5.92MPa, 5.02MPa with and without cycling, respectively). Fracture pattern analysis showed the occurrence of 100% of adhesive failures for Enamel Loc, while the conventional sealant Climpro presented 95% of adhesive failures and 5% of mixed failures. Conclusion: The conventional sealant presented higher microtensile shear bond strength to dental enamel in comparison with the self-etching sealant. Thermal cycling did not affect the bond strength of the sealants used in this study. © 2011 Nova Science Publishers, Inc.
Resumo:
The integrated Safety Assessment (ISA) methodology, developed by the Spanish Nuclear Safety Council (CSN), has been applied to a thermal-hydraulic analysis of PWR Station Blackout (SBO) sequences in the context of the IDPSA (Integrated Deterministic-Probabilistic Safety Assessment) network objectives. The ISA methodology allows obtaining the damage domain (the region of the uncertain parameters space where the damage limit is exceeded) for each sequence of interest as a function of the operator actuations times. Given a particular safety limit or damage limit, several data of every sequence are necessary in order to obtain the exceedance frequency of that limit. In this application these data are obtained from the results of the simulations performed with MAAP code transients inside each damage domain and the time-density probability distributions of the manual actions. Damage limits that have been taken into account within this analysis are: local cladding damage (PCT>1477 K); local fuel melting (T>2499 K); fuel relocation in lower plenum and vessel failure. Therefore, to every one of these damage variables corresponds a different damage domain. The operation of the new passive thermal shutdown seals developed by several companies since Fukushima accident is considered in the paper. The results show the capability and necessity of the ISA methodology, or similar, in order to obtain accurate results that take into account time uncertainties.
Resumo:
Thermal buckling behavior of automotive clutch and brake discs is studied by making the use of finite element method. It is found that the temperature distribution along the radius and the thickness affects the critical buckling load considerably. The results indicate that a monotonic temperature profile leads to a coning mode with the highest temperature located at the inner radius. Whereas a temperature profile with the maximum temperature located in the middle leads to a dominant non-axisymmetric buckling mode, which results in a much higher buckling temperature. A periodic variation of temperature cannot lead to buckling. The temperature along the thickness can be simplified by the mean temperature method in the single material model. The thermal buckling analysis of friction discs with friction material layer, cone angle geometry and fixed teeth boundary conditions are also studied in detail. The angular geometry and the fixed teeth can improve the buckling temperature significantly. Young’s Modulus has no effect when single material is applied in the free or restricted conditions. Several equations are derived to validate the result. Young’s modulus ratio is a useful factor when the clutch has several material layers. The research findings from this paper are useful for automotive clutch and brake discs design against structural instability induced by thermal buckling.
Resumo:
In this study, thermal, exergetic analysis and performance evaluation of seawater and fresh wet cooling tower and the effect of parameters on its performance is investigated. With using of energy and mass balance equations, experimental results, a mathematical model and EES code developed. Due to lack of fresh water, seawater cooling is interesting choice for future of cooling, so the effect of seawater in the range of 1gr/kg to 60gr/kg for salinity on the performance characteristics like air efficiency, water efficiency, output water temperature of cooling tower, flow of the exergy, and the exergy efficiency with comparison with fresh water examined. Decreasing of air efficiency about 3%, increasing of water efficiency about 1.5% are some of these effects. Moreover with formation of fouling the performance of cooling tower decreased about 15% which this phenomena and its effects like increase in output water temperature and tower excess volume has been showed and also accommodate with others work. Also optimization for minimizing cost, maximizing air efficiency, and minimizing exergy destruction has been done, results showed that optimization on minimizing the exergy destruction has been satisfy both minimization of the cost and the maximization of the air efficiency, although it will not necessarily permanent for all inputs and optimizations. Validation of this work is done by comparing computational results and experimental data which showed that the model have a good accuracy.
Resumo:
Wood is considered an ideal solution for floors and roofs building construction, due the mechanical and thermal properties, associated with acoustic conditions. These constructions have good sound absorption, heat insulation and relevant architectonic characteristics. They are used in many civil applications: concert and conference halls, auditoriums, ceilings, walls… However, the high vulnerability of wooden elements submitted to fire conditions requires the evaluation of its structural behaviour with accuracy. The main objective of this work is to present a numerical model to assess the fire resistance of wooden cellular slabs with different perforations. Also the thermal behaviour of the wooden slabs will be compared considering different material insulation, with different sizes, inside the cavities. A transient thermal analysis with nonlinear material behaviour will be solved using ANSYS© program. This study allows to verify the fire resistance, the temperature evolution and the char-layer, throughout a wooden cellular slab with perforations and considering the insulation effect inside the cavities.
Resumo:
The gamma-radiolysis of poly(tetrafluoroethylene-co-perfluoromethyl vinyl ether) (TFE/PMVE) was investigated using chemical and mechanical analyses. The polymer was found to form an insoluble network with a dose of gelation of 15.8 kGy. Tensile and glass transition temperature measurements indicated the predominance of crosslinking, with optimal elastomeric properties reached in the dose range of 120 to 200 kGy. Photoacoustic FTIR spectroscopy CPAS) showed the formation of new carboxylic acid end groups on irradiation. These new end groups were shown to decrease the thermal oxidative stability of the crosslinked network as determined by thermal gravimetric analysis. Electron spin resonance (ESR) studies of the polymer at 77 K indicated the presence of radical precursors. A G-value of 1.1 was determined for radical production at 77 K. Comparison of radical concentrations for a copolymer with a different mole ratio of PMVE, indicated that the PMVE units contribute to scission reactions. (C) 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
Huonetilojen lämpöolosuhteiden hallinta on tärkeä osa talotekniikan suunnittelua. Tavallisesti huonetilan lämpöolosuhteita mallinnetaan menetelmillä, joissa lämpödynamiikkaa lasketaan huoneilmassa yhdessä laskentapisteessä ja rakenteissa seinäkohtaisesti. Tarkastelun kohteena on yleensä vain huoneilman lämpötila. Tämän diplomityön tavoitteena oli kehittää huoneilman lämpöolosuhteiden simulointimalli, jossa rakenteiden lämpödynamiikka lasketaan epästationaarisesti energia-analyysilaskennalla ja huoneilman virtauskenttä mallinnetaan valittuna ajanhetkenä stationaarisesti virtauslaskennalla. Tällöin virtauskentälle saadaan jakaumat suunnittelun kannalta olennaisista suureista, joita tyypillisesti ovat esimerkiksi ilman lämpötila ja nopeus. Simulointimallin laskentatuloksia verrattiin testihuonetiloissa tehtyihin mittauksiin. Tulokset osoittautuivat riittävän tarkoiksi talotekniikan suunnitteluun. Mallilla simuloitiin kaksi huonetilaa, joissa tarvittiin tavallista tarkempaa mallinnusta. Vertailulaskelmia tehtiin eri turbulenssimalleilla, diskretointitarkkuuksilla ja hilatiheyksillä. Simulointitulosten havainnollistamiseksi suunniteltiin asiakastuloste, jossa on esitetty suunnittelun kannalta olennaiset asiat. Simulointimallilla saatiin lisätietoa varsinkin lämpötilakerrostumista, joita tyypillisesti on arvioitu kokemukseen perustuen. Simulointimallin kehityksen taustana käsiteltiin rakennusten sisäilmastoa, lämpöolosuhteita ja laskentamenetelmiä sekä mallinnukseen soveltuvia kaupallisia ohjelmia. Simulointimallilla saadaan entistä tarkempaa ja yksityiskohtaisempaa tietoa lämpöolosuhteiden hallinnan suunnitteluun. Mallin käytön ongelmia ovat vielä virtauslaskennan suuri laskenta-aika, turbulenssin mallinnus, tuloilmalaitteiden reunaehtojen tarkka määritys ja laskennan konvergointi. Kehitetty simulointimalli tarjoaa hyvän perustan virtauslaskenta- ja energia-analyysiohjelmien kehittämiseksi ja yhdistämiseksi käyttäjäystävälliseksi talotekniikan suunnittelutyökaluksi.
Resumo:
Following over 170+ pages and additional appendixes are formed based on content of Course: Fundamentals of Heat Transfer. Mainly this summarizes relevant parts on Book of Fundamentals of Heat and Mass Transfer (Incropera), but also other references introducing the same concepts are included. Student’s point of view has been consideredwith following highlights: (1) Relevant topics are presented in a nutshell to provide fast digestion of principles of heat transfer. (2) Appendixes include terminology dictionary. (3) Totally 22 illustrating examples are connecting theory to practical applications and quantifying heat transfer to understandable forms as: temperatures, heat transfer rates, heat fluxes, resistances and etc. (4) Most important Learning outcomes are presented for each topic separately. The Book, Fundamentals of Heat and Mass Transfer (Incropera), is certainly recommended for those going beyond basic knowledge of heat transfer. Lecture Notes consists of four primary content-wise objectives: (1) Give understanding to physical mechanisms of heat transfer, (2)Present basic concepts and terminology relevant for conduction, convection and radiation (3) Introduce thermal performance analysis methods for steady state and transient conduction systems. (4) Provide fast-to-digest phenomenological understanding required for basic design of thermal models
Resumo:
Thesis: A liquid-cooled, direct-drive, permanent-magnet, synchronous generator with helical, double-layer, non-overlapping windings formed from a copper conductor with a coaxial internal coolant conduit offers an excellent combination of attributes to reliably provide economic wind power for the coming generation of wind turbines with power ratings between 5 and 20MW. A generator based on the liquid-cooled architecture proposed here will be reliable and cost effective. Its smaller size and mass will reduce build, transport, and installation costs. Summary: Converting wind energy into electricity and transmitting it to an electrical power grid to supply consumers is a relatively new and rapidly developing method of electricity generation. In the most recent decade, the increase in wind energy’s share of overall energy production has been remarkable. Thousands of land-based and offshore wind turbines have been commissioned around the globe, and thousands more are being planned. The technologies have evolved rapidly and are continuing to evolve, and wind turbine sizes and power ratings are continually increasing. Many of the newer wind turbine designs feature drivetrains based on Direct-Drive, Permanent-Magnet, Synchronous Generators (DD-PMSGs). Being low-speed high-torque machines, the diameters of air-cooled DD-PMSGs become very large to generate higher levels of power. The largest direct-drive wind turbine generator in operation today, rated just below 8MW, is 12m in diameter and approximately 220 tonne. To generate higher powers, traditional DD-PMSGs would need to become extraordinarily large. A 15MW air-cooled direct-drive generator would be of colossal size and tremendous mass and no longer economically viable. One alternative to increasing diameter is instead to increase torque density. In a permanent magnet machine, this is best done by increasing the linear current density of the stator windings. However, greater linear current density results in more Joule heating, and the additional heat cannot be removed practically using a traditional air-cooling approach. Direct liquid cooling is more effective, and when applied directly to the stator windings, higher linear current densities can be sustained leading to substantial increases in torque density. The higher torque density, in turn, makes possible significant reductions in DD-PMSG size. Over the past five years, a multidisciplinary team of researchers has applied a holistic approach to explore the application of liquid cooling to permanent-magnet wind turbine generator design. The approach has considered wind energy markets and the economics of wind power, system reliability, electromagnetic behaviors and design, thermal design and performance, mechanical architecture and behaviors, and the performance modeling of installed wind turbines. This dissertation is based on seven publications that chronicle the work. The primary outcomes are the proposal of a novel generator architecture, a multidisciplinary set of analyses to predict the behaviors, and experimentation to demonstrate some of the key principles and validate the analyses. The proposed generator concept is a direct-drive, surface-magnet, synchronous generator with fractional-slot, duplex-helical, double-layer, non-overlapping windings formed from a copper conductor with a coaxial internal coolant conduit to accommodate liquid coolant flow. The novel liquid-cooling architecture is referred to as LC DD-PMSG. The first of the seven publications summarized in this dissertation discusses the technological and economic benefits and limitations of DD-PMSGs as applied to wind energy. The second publication addresses the long-term reliability of the proposed LC DD-PMSG design. Publication 3 examines the machine’s electromagnetic design, and Publication 4 introduces an optimization tool developed to quickly define basic machine parameters. The static and harmonic behaviors of the stator and rotor wheel structures are the subject of Publication 5. And finally, Publications 6 and 7 examine steady-state and transient thermal behaviors. There have been a number of ancillary concrete outcomes associated with the work including the following. X Intellectual Property (IP) for direct liquid cooling of stator windings via an embedded coaxial coolant conduit, IP for a lightweight wheel structure for lowspeed, high-torque electrical machinery, and IP for numerous other details of the LC DD-PMSG design X Analytical demonstrations of the equivalent reliability of the LC DD-PMSG; validated electromagnetic, thermal, structural, and dynamic prediction models; and an analytical demonstration of the superior partial load efficiency and annual energy output of an LC DD-PMSG design X A set of LC DD-PMSG design guidelines and an analytical tool to establish optimal geometries quickly and early on X Proposed 8 MW LC DD-PMSG concepts for both inner and outer rotor configurations Furthermore, three technologies introduced could be relevant across a broader spectrum of applications. 1) The cost optimization methodology developed as part of this work could be further improved to produce a simple tool to establish base geometries for various electromagnetic machine types. 2) The layered sheet-steel element construction technology used for the LC DD-PMSG stator and rotor wheel structures has potential for a wide range of applications. And finally, 3) the direct liquid-cooling technology could be beneficial in higher speed electromotive applications such as vehicular electric drives.