992 resultados para transient stability


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents transient stability analysis for a power system with high wind penetration. The transient stability has been evaluated based on two stability criteria: rotor angle stability and voltage stability. A modified IEEE-14 bus system has been used as the main study network and simulations have been conducted at several wind power penetration levels, defined as a fraction of total system generation. A wide range of scenarios have been presented based on the wind farm voltage at the point of connection, i.e. low voltage (LV) distribution level and high voltage (HV) transmission level, and the type of wind generator technology, i.e. fixed speed induction generator (FSIG) and doubly-fed induction generator (DFIG).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An efficient and robust case sorting algorithm based on Extended Equal Area Criterion (EEAC) is proposed in this paper for power system transient stability assessment (TSA). The time-varying degree of an equivalent image system can be deduced by comparing the analysis results of Static EEAC (SEEAC) and Dynamic EEAC (DEEAC), the former of which neglects all time-varying factors while the latter partially considers the time-varying factors. Case sorting rules according to their transient stability severity are set combining the time-varying degree and fault messages. Then a case sorting algorithm is designed with the “OR” logic among multiple rules, based on which each case can be identified into one of the following five categories, namely stable, suspected stable, marginal, suspected unstable and unstable. The performance of this algorithm is verified by studying 1652 contingency cases from 9 real Chinese provincial power systems under various operating conditions. It is shown that desirable classification accuracy can be achieved for all the contingency cases at the cost of very little extra computational burden and only 9.81% of the whole cases need to carry out further detailed calculation in rigorous on-line TSA conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In stressed power systems with large induction machine component, there exist undamped electromechanical modes and unstable montonic voltage modes. This article proposes a sequential design of an excitation controller and a power system stabiliser (PSS) to stabilise the system. The operating region, with induction machines in stressed power systems, is often not captured using a linearisation around an operating point, and to alleviate this situation a robust controller is designed which guaruntees stable operation in a large region of operation. A minimax linear quadratic Gaussian design is used for the design of the supplementary control to automatic voltage regulators, and a classical PSS structure is used to damp electromechanical oscillations. The novelty of this work is in proposing a method to capture the unmodelled nonlinear dynamics as uncertainty in the design of the robust controller. Tight bounds on the uncertainty are obtained using this method which enables high-performance controllers. An IEEE benchmark test system has been used to demonstrate the performance of the designed controller

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transient stability, an important issue to avoid the loss of synchronous operation in power systems, can be achieved through proper coordination and operation of protective devices within the critical clearing time (CCT). In view of this, the development of an intelligent decision support system is useful for providing better protection relay coordination. This paper presents an intelligent distributed agent-based scheme to enhance the transient stability of smart grids in light of CCT where a multi-agent framework (MAF) is developed and the agents are represented in such a way that they are equipped with protection relays (PRs). In addition to this, an algorithm is developed which assists the agents to make autonomous decision for controlling circuit breakers (CBs) independently. The proposed agents are responsible for the coordination of protection devices which is done through the precise detection and isolation of faults within the CCT. The agents also perform the duty of reclosing CBs after the clearance of faults. The performance of the proposed approach is demonstrated on a standard IEEE 39-bus test system by considering short-circuit faults at different locations under various load conditions. To further validate the suitability of the proposed scheme a benchmark 16-machine 68-bus power system is also considered. Simulation results show that MAF exhibits full flexibility to adapt the changes in system configurations and increase the stability margin for both test systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work presents a methodology to analyze transient stability (first oscillation) of electric energy systems, using a neural network based on ART architecture (adaptive resonance theory), named fuzzy ART-ARTMAP neural network for real time applications. The security margin is used as a stability analysis criterion, considering three-phase short circuit faults with a transmission line outage. The neural network operation consists of two fundamental phases: the training and the analysis. The training phase needs a great quantity of processing for the realization, while the analysis phase is effectuated almost without computation effort. This is, therefore the principal purpose to use neural networks for solving complex problems that need fast solutions, as the applications in real time. The ART neural networks have as primordial characteristics the plasticity and the stability, which are essential qualities to the training execution and to an efficient analysis. The fuzzy ART-ARTMAP neural network is proposed seeking a superior performance, in terms of precision and speed, when compared to conventional ARTMAP, and much more when compared to the neural networks that use the training by backpropagation algorithm, which is a benchmark in neural network area. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work presents a procedure for transient stability analysis and preventive control of electric power systems, which is formulated by a multilayer feedforward neural network. The neural network training is realized by using the back-propagation algorithm with fuzzy controller and adaptation of the inclination and translation parameters of the nonlinear function. These procedures provide a faster convergence and more precise results, if compared to the traditional back-propagation algorithm. The adaptation of the training rate is effectuated by using the information of the global error and global error variation. After finishing the training, the neural network is capable of estimating the security margin and the sensitivity analysis. Considering this information, it is possible to develop a method for the realization of the security correction (preventive control) for levels considered appropriate to the system, based on generation reallocation and load shedding. An application for a multimachine power system is presented to illustrate the proposed methodology. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The paper presents a method for security control of electric power systems effected by generation reallocation, determined by sensitivity analysis and optimisation. The model is developed considering the dynamic aspects of the network (transient stability). Security control methodology is developed using sensitivity analysis of the security margin in relation to the mechanical power of synchronous machines in the system. The power reallocated to each machine is determined by means of linear programming. To illustrate the proposed methodology, an example is presented which considers a multimachine system composed of 10 synchronous machines, 45 buses, and 72 transmission lines, based on the configuration of a southern Brazilian system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work presents a methodology to analyze electric power systems transient stability for first swing using a neural network based on adaptive resonance theory (ART) architecture, called Euclidean ARTMAP neural network. The ART architectures present plasticity and stability characteristics, which are very important for the training and to execute the analysis in a fast way. The Euclidean ARTMAP version provides more accurate and faster solutions, when compared to the fuzzy ARTMAP configuration. Three steps are necessary for the network working, training, analysis and continuous training. The training step requires much effort (processing) while the analysis is effectuated almost without computational effort. The proposed network allows approaching several topologies of the electric system at the same time; therefore it is an alternative for real time transient stability of electric power systems. To illustrate the proposed neural network an application is presented for a multi-machine electric power systems composed of 10 synchronous machines, 45 buses and 73 transmission lines. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper deals with hybrid method for transient stability analysis combining time domain simulation and a direct method. Nowadays, the step-by-step simulation is the best available tool for allowing the uses of detailed models and for providing reliable results. The main limitation of this approach involves the large time of computational simulations and the absence of stability margin. On the other hand, direct methods, that demand less CPU time, did not show ample reliability and applicability yet. The best way seems to be using hybrid solutions, in which a direct method is incorporated in a time domain simulation tool. This work has studied a direct method using the transient potential and kinetic energy of the critical machine only. In this paper the critical machine is identified by a fast and efficient method, and the proposal is new for using to get stability margins from hybrid approaches. Results from systems, like 16-machine, show stability indices to dynamic security assessment. © 2001 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work presents a methodology to analyze transient stability for electric energy systems using artificial neural networks based on fuzzy ARTMAP architecture. This architecture seeks exploring similarity with computational concepts on fuzzy set theory and ART (Adaptive Resonance Theory) neural network. The ART architectures show plasticity and stability characteristics, which are essential qualities to provide the training and to execute the analysis. Therefore, it is used a very fast training, when compared to the conventional backpropagation algorithm formulation. Consequently, the analysis becomes more competitive, compared to the principal methods found in the specialized literature. Results considering a system composed of 45 buses, 72 transmission lines and 10 synchronous machines are presented. © 2003 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper deals with transient stability analysis based on time domain simulation on vector processing. This approach requires the solution of a set of differential equations in conjunction of another set of algebraic equations. The solution of the algebraic equations has presented a scalar as sequential set of tasks, and the solution of these equations, on vector computers, has required much more investigations to speedup the simulations. Therefore, the main objective of this paper has been to present methods to solve the algebraic equations using vector processing. The results, using a GRAY computer, have shown that on-line transient stability assessment is feasible.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The research carried out in this thesis was mainly concerned with the effects of large induction motors and their transient performance in power systems. Computer packages using the three phase co-ordinate frame of reference were developed to simulate the induction motor transient performance. A technique using matrix algebra was developed to allow extension of the three phase co-ordinate method to analyse asymmetrical and symmetrical faults on both sides of the three phase delta-star transformer which is usually required when connecting large induction motors to the supply system. System simulation, applying these two techniques, was used to study the transient stability of a power system. The response of a typical system, loaded with a group of large induction motors, two three-phase delta-star transformers, a synchronous generator and an infinite system was analysed. The computer software developed to study this system has the advantage that different types of fault at different locations can be studied by simple changes in input data. The research also involved investigating the possibility of using different integrating routines such as Runge-Kutta-Gill, RungeKutta-Fehlberg and the Predictor-Corrector methods. The investigation enables the reduction of computation time, which is necessary when solving the induction motor equations expressed in terms of the three phase variables. The outcome of this investigation was utilised in analysing an introductory model (containing only minimal control action) of an isolated system having a significant induction motor load compared to the size of the generator energising the system.