993 resultados para transformation matrix


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Terrestrial laser scanning (TLS) provides high-resolution point clouds of the topography and new TLS instruments with ranges exceeding 300 m or even 1000 m are powerful tools for characterizing and monitoring slope movements. This study focuses on the 35 million m3 Åknes rockslide in Western Norway, which is one of the most investigated and monitored rockslides in the world. The TLS point clouds are used for the structural analysis of the steep, inaccessible main scarp of the rockslide, including an assessment of the discontinuity sets and fold axes. TLS acquisitions in 2006, 2007 and 2008 provide information on 3-D displacements for the entire scanned area and are not restricted like conventional survey instruments to single measurement points. The affine transformation matrix between two TLS acquisitions precisely describes the rockslide displacements and enables their separation into translational components, such as the displacement velocity and direction, and rotational components, like toppling. This study shows the ability of TLS to obtain reliable 3-D displacement information over a large, unstable area. Finally, a possible instability model for the upper part of Åknes rockslide explains the measured translational and rotational displacements by a combination of southward planar sliding along the gneiss foliation, gravitational vertical settlement along the complex, stepped basal sliding surface and northward toppling toward the opened graben structure.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Tässä työssä johdetaan lineaarimuunnoksella CIE x y z-värinsovitusfunktioista uudet värinsovitusfunktiot. Tarvittava muunnosmatriisi etsitään optimoimalla CIE ja BFD-RIT värieroellipsejä Matlab-ympäristössä. Työn tuloksena saatiin muunnosmatriisi, ja sillä muunnetut uudet värinsovitusfunktiot ja CIELAB-tyyppinen väriavaruus. Euklidisella etäisyydellä mitattuna CIE ja BFD-RIT värieroellipsien muoto ja koko paranivat noin kolmanneksen, mikä oli myös tavoitteena.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This dissertation describes an approach for developing a real-time simulation for working mobile vehicles based on multibody modeling. The use of multibody modeling allows comprehensive description of the constrained motion of the mechanical systems involved and permits real-time solving of the equations of motion. By carefully selecting the multibody formulation method to be used, it is possible to increase the accuracy of the multibody model while at the same time solving equations of motion in real-time. In this study, a multibody procedure based on semi-recursive and augmented Lagrangian methods for real-time dynamic simulation application is studied in detail. In the semirecursive approach, a velocity transformation matrix is introduced to describe the dependent coordinates into relative (joint) coordinates, which reduces the size of the generalized coordinates. The augmented Lagrangian method is based on usage of global coordinates and, in that method, constraints are accounted using an iterative process. A multibody system can be modelled as either rigid or flexible bodies. When using flexible bodies, the system can be described using a floating frame of reference formulation. In this method, the deformation mode needed can be obtained from the finite element model. As the finite element model typically involves large number of degrees of freedom, reduced number of deformation modes can be obtained by employing model order reduction method such as Guyan reduction, Craig-Bampton method and Krylov subspace as shown in this study The constrained motion of the working mobile vehicles is actuated by the force from the hydraulic actuator. In this study, the hydraulic system is modeled using lumped fluid theory, in which the hydraulic circuit is divided into volumes. In this approach, the pressure wave propagation in the hoses and pipes is neglected. The contact modeling is divided into two stages: contact detection and contact response. Contact detection determines when and where the contact occurs, and contact response provides the force acting at the collision point. The friction between tire and ground is modelled using the LuGre friction model, which describes the frictional force between two surfaces. Typically, the equations of motion are solved in the full matrices format, where the sparsity of the matrices is not considered. Increasing the number of bodies and constraint equations leads to the system matrices becoming large and sparse in structure. To increase the computational efficiency, a technique for solution of sparse matrices is proposed in this dissertation and its implementation demonstrated. To assess the computing efficiency, augmented Lagrangian and semi-recursive methods are implemented employing a sparse matrix technique. From the numerical example, the results show that the proposed approach is applicable and produced appropriate results within the real-time period.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Thema der vorliegenden Arbeit ist die Bestimmung von Basen von Räumen spezieller harmonischer 2-Koketten auf Bruhat-Tits-Gebäuden der PGL(3) über Funktionenkörpern. Hierzu wird der Raum der speziellen harmonischen 2-Koketten auf dem Bruhat-Tits-Gebäude der PGL(3) zunächst mit gewissen komplexen Linearkombinationen von 2-Simplizes des Quotientenkomplexes, sogenannten geschlossenen Flächen, identifiziert und anschließend durch verallgemeinerte Modulsymbole beschrieben. Die Darstellung der Gruppe der Modulsymbole durch Erzeuger und Relationen ermöglicht die Bestimmung einer endlichen Basis des Raums der speziellen harmonischen 2-Koketten. Die so gewonnenen Erkenntnisse können zur Untersuchung von Hecke-Operatoren auf speziellen harmonischen 2-Koketten genutzt werden. Mithilfe des hergeleiteten Isomorphismus zwischen dem Raum der speziellen harmonischen 2-Koketten und dem Raum der geschlossenen Flächen wird die Theorie der Hecke-Operatoren auf den Raum der geschlossenen Flächen übertragen. Dies ermöglicht die Berechnung von Abbildungsmatrizen der Hecke-Operatoren auf dem Raum der harmonischen 2-Koketten durch die Auswertung auf den geschlossenen Flächen.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Emission line ratios have been essential for determining physical parameters such as gas temperature and density in astrophysical gaseous nebulae. With the advent of panoramic spectroscopic devices, images of regions with emission lines related to these physical parameters can, in principle, also be produced. We show that, with observations from modern instruments, it is possible to transform images taken from density-sensitive forbidden lines into images of emission from high- and low-density clouds by applying a transformation matrix. In order to achieve this, images of the pairs of density-sensitive lines as well as the adjacent continuum have to be observed and combined. We have computed the critical densities for a series of pairs of lines in the infrared, optical, ultraviolet and X-rays bands, and calculated the pair line intensity ratios in the high- and low-density limit using a four- and five-level atom approximation. In order to illustrate the method, we applied it to Gemini Multi-Object Spectrograph (GMOS) Integral Field Unit (GMOS-IFU) data of two galactic nuclei. We conclude that this method provides new information of astrophysical interest, especially for mapping low- and high-density clouds; for this reason, we call it `the ld/hd imaging method`.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The objective of this paper is to show an alternative representation in time domain of a non-transposed three-phase transmission line decomposed in its exact modes by using two transformation matrices. The first matrix is Clarke's matrix that is real, frequency independent, easily represented in computational transient programs (EMTP) and separates the line into quasi-modes a, b and zero. After that, Quasi-modes a and zero are decomposed into their exact modes by using a modal transformation matrix whose elements can be synthesized in time domain through standard curve-fitting techniques. The main advantage of this alternative representation is to reduce the processing time because a frequency dependent modal transformation matrix of a three-phase line has nine elements to be represented in time domain while a modal transformation matrix of a two-phase line has only four elements. This paper shows modal decomposition process and eigenvectors of a non-transposed three-phase line with a vertical symmetry plane whose nominal voltage is 440 kV and line length is 500 km.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The objective of this letter is to propose an alternative modal representation of a nontransposed three-phase transmission line with a vertical symmetry plane by using two transformation matrices. Initially, Clarke's matrix is used to separate the line into components a, 0, and zero. Because a and zero components are not exact modes, they can be considered as being a two-phase line that will be decomposed in its exact modes by using a 2 x 2 modal transformation matrix. This letter will describe the characteristics of the two-phase line before mentioned. This modal representation is applied to decouple a nontransposed three-phase transmission line with a vertical symmetry plane whose nominal voltage is 440 kV.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The objective of this paper is to show an alternative methodology to estimate per unit length parameters of a line segment of a transmission line. With this methodology the line segment parameters can be obtained starting from the phase currents and -voltages in receiving and sending end of the line segment. If the line segment is represented as being one or more pi circuits whose frequency dependent parameters are considered lumped, its impedance and admittance can be easily expressed as functions of the currents and voltages at the sending and receiving end. Because we are supposing that voltages and currents at the sending and receiving end of the tine segment (in frequency domain) are known, it is possible to obtains its impedance and admittance and consequently its per unit length longitudinal and transversal parameters. The procedure will be applied to estimate the longitudinal and transversal parameters of a small segment of a single-phase line that is already built.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The objective of this paper is to show an alternative methodology to estimate per unit length parameters of a line segment of a transmission line. With this methodology the line segment parameters can be obtained starting from the phase currents and voltages in receiving and sending end of the line segment. If the line segment is represented as being one or more π circuits whose frequency dependent parameters are considered lumped, its impedance and admittance can be easily expressed as functions of the currents and voltages at the sending and receiving end. Because we are supposing that voltages and currents at the sending and receiving end of the line segment (in frequency domain) are known, it is possible to obtains its impedance and admittance and consequently its per unit length longitudinal and transversal parameters. The procedure will be applied to estimate the longitudinal and transversal parameters of a small segment of a single-phase line that is already built. © 2006 IEEE.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The paper shows an alternative methodology to calculate transmission line parameters per unit length and to apply it in a three-phase line with a vertical symmetry plane. This procedure is derived from a general procedure where the modal transformation matrix of the line is required. In this paper, the unknown modal transformation matrix requested by general procedure is substituted by Clarke's matrix. With the substitution that is shown in the paper, the transmission line parameters can be obtained starting from impedances measured in one terminal of the line. First, the article shows the classical methodology to calculate frequency dependent transmission line parameters by using Carson and Pollaczeck's equations for representing the ground effect and Bessel's functions to represent the skin effect. After that, a new procedure is shown to calculate frequency dependent transmission line parameters directly from currents and voltages of an existing line. Then, this procedure is applied in a non-transposed three-phase transmission line whose parameters have been previously calculated by using the classical methodology. Finally, the results obtained by using the new procedure and by using the classical methodology are compared. The article shows simulation results for typical frequency spectra of switching transients (10 Hz to 10 kHz). Results have shown that procedure has © 2006 IEEE.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper describes a computational model based on lumped elements for the mutual coupling between phases in three-phase transmission lines without the explicit use of modal transformation matrices. The self and mutual parameters and the coupling between phases are modeled using modal transformation techniques. The modal representation is developed from the intrinsic consideration of the modal transformation matrix and the resulting system of time-domain differential equations is described as state equations. Thus, a detailed profile of the currents and the voltages through the line can be easily calculated using numerical or analytical integration methods. However, the original contribution of the article is the proposal of a time-domain model without the successive phase/mode transformations and a practical implementation based on conventional electrical circuits, without the use of electromagnetic theory to model the coupling between phases. © 2011 IEEE.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Modal analysis is widely approached in the classic theory of transmission line modeling. This technique is applied to model the three-phase representation of conventional electric systems taking into account their self and mutual electrical parameters. However the methodology has some particularities and inaccuracies for specific applications which are not clearly described in the basic references of this topic. This paper provides a thorough review of modal analysis theory applied to line models followed by an original and simple procedure to overcome the possible errors embedded in the modal decoupling through the three-phase system modeling. © 2012 IEEE.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The phases of a transmission line are tightly coupled due to mutual impedances and admittances of the line. One way to accomplish the calculations of currents and voltages in multi-phase lines consists in representing them in modal domain, where its n coupled phases are represented by their n propagation modes. The separation line in their modes of propagation is through the use of a modal transformation matrix whose columns are eigenvectors associated with the parameters of the line. Usually, this matrix is achieved through numerical methods which do not allow the achievement of an analytical model for line developed directly in the phases domain. This work will show an analytical model for phase currents and voltages of the line and results it will be applied to a hypothetical two-phase. It will be shown results obtained with that will be compared to results obtained using a classical model. © 2012 IEEE.