981 resultados para transfer reactions


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The kinetics of facilitated ion-transfer (FIT) reactions at high driving force across the water/1,2-dichloroethane (W/DCE) interface is investigated by scanning electrochemical microscopy (SECM). The transfers of lithium and sodium ions facilitated by dibenzo-18-crown-6 (DB18C6) across the polarized W/DCE interface are chosen as model systems because they have the largest potential range that can be controlled externally. By selecting the appropriate ratios of the reactant concentrations (Kr c(M)+/c(DB18C6)) and using nanopipets as the SECM tips, we obtained a series of rate constants (k(f)) at various driving forces (Delta(O)(W) phi(ML+)(0') - Es, Delta(O)(W) phi(ML+)(0') is the formal potential of facilitated ion transfer and Es is the potential applied externally at the substrate interface) based on a three-electrode system. The FIT rate constants k(f) are found to be dependent upon the driving force. When the driving force is low, the dependence of 1n k(f) on the driving force is linear with a transfer coefficient of about 0.3. It follows the classical Butler-Volmer theory and then reaches a maximum before it decreases again when we further increase the driving forces. This indicates that there exists an inverted region, and these behaviors have been explained by Marcus theory.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multilayers of anionic phosphotungstic acid (PTA) clusters and positively charged protonated poly(allylamine hydrochloride) (PAH) were assembled by layer-by-layer self-assembled method on Au electrode modified by 3-mercaptopropionic acid (3-MPA). The effect of the charge of the surface of the multilayer assembly on the kinetics of the charge transfer reaction was studied by using the redox probes [Fe(CN)(6)](3-)/(4-) [Ru(NH3)(6)](2+/3+). The cyclic voltammetry experiments showed that the peak currents and peak-to-peak potential differences changed after assembling different layers on the electrode surface indicating that the charge of the surface has a significant effect on the kinetics of the studied charge transfer reactions. These reactions were studied in more detail by electrochemical impedance spectroscopy. When [Fe(CN)(6)](3-/-) was used as the redox label, multilayers that terminated with negatively charged PTA showed a high charge transfer resistance but multilayers that terminated with positively charged PAH showed lower charge transfer resistance. With [Ru(NH3)(6)](2+/3+) as the redox label, the charge transfer resistance at multilayers that terminated with positively charged PAH was much higher than at the multilayer terminated by the negatively charged PTA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel method to study electron-transfer (ET) reactions between ferrocene in 1,2-dichloroethane (DCE) and a redox couple of K3Fe(CN)(6) and K4Fe(CN)(6) in water using scanning electrochemical microscopy (SECM) with a three-electrode setup is reported. In this work, a water droplet that adheres to the Surface of a platinum disk electrode is immersed in a DCE solution. The aqueous redox couple serves both as a reference electrode on the platinum disk and as an electron donor/acceptor at the polarized liquid/liquid inter-face. With the present experimental approach, the liquid/liquid interface can be polarized externally, while the electron-transfer reactions between the two phases can be monitored independently by SECM. The apparent heterogeneous rate constants for the ET reactions were obtained by fitting the experimental approach curves to the theoretical values. These rate constants obey the Butler-Volmer theory i.e., them, are found to be potential dependent.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electron impact mass spectrum (EIMS) of 3-phenyl-1-butyn-3-ol was reported in this paper. Collision-induced dissociation (CID) was used to study the gas phase ion structure of [C8H7](+) formed by the fragmentation of ionized 3-phenyl-1-butyn-3-ol, and that it has the same structure as m/z 103 ions generated by cinnamic acid and alpha-methylstyrene. Deuterium labelling, metastable ion (MI) and CID experimental results indicate the formation of m/z 103 ion resulting from molecular ion of 3-phenyl-1-butyn-3-ol, which is a stepwise procedure via twice proton transfers, rather than concerted process during the successive elimination of methyl radical and neutral carbon monoxide accompanying hydrogen transfer. Moreover, in order to rationalized these fragmentation processes, the bimolecular proton bound complex between benzyne and acetylene intermediate has been proposed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In fast atom bombardment, two fullerenols C-60(OH)(x) (x=13-15) and C-60(OH)(x) (x-24-26) gave rise to a group of ions centered at C-118 with intervals of 24 mass units in the high mass region. In contrast, no such ions appeared in the mass spectra of pure C-60, C-70 and other fullerene derivatives such as C-60(C6H5)(10), under the same conditions. It is proposed that the pinacol rearrangement of C-60(OH)(2), resulting from partial rupture of the polyhydroxy molecules, produces C-59 with two carbon atoms bearing an unpaired electron, and that dimerization of this reactive intermediate is responsible for the formation of the predominant product C-118. An intermolecular nC(2) transfer process is used to explain the symmetrical abundance distribution of these product ions in the spectra of fullerenols.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The issue of multiple proton transfer (PT) reactions in solution is addressed by performing molecular dynamics simulations for a formic acid dimer embedded in a water cluster. The reactant species is treated quantum mechanically, within a density functional approach, while the solvent is represented by a classical model. By constraining different distances within the dimer we analyze the PT process in a variety of situations representative of more complex environments. Free energy profiles are presented, and analyzed in terms of typical solvated configurations extracted from the simulations. A decrease in the PT barrier height upon solvation is rationalized in terms of a transition state which is more polarized than the stable states. The dynamics of the double PT process is studied in a low-barrier case and correlated with solvent polarization fluctuations. Cooperative effects in the motion of the two protons are observed in two different situations: when the solvent polarization does not favor the transfer of one of the two protons and when the motion of the two protons is not synchronized. This body of observations is correlated with local structural and dynamical properties of the solvent in the vicinity of the reactant. (C) 2000 American Institute of Physics. [S0021-9606(00)51121-0].

Relevância:

100.00% 100.00%

Publicador:

Resumo:

1,3-propanediol was subjected to a range of amination conditions. The N-heterocyclic carbene piano stool complex [Cp*IrCl2(bmim)] was found to be a good catalyst for amination and dehydration in toluene or ionic liquid; product compositions could be tuned by altering the ratio of diol to amine.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The classic, non-photochemical blue bottle experiment involves the reaction of methylene blue (MB) with deprotonated glucose, to form a bleached form of the dye, leuco-methylene blue (LMB), and subsequent colour recovery by shaking with air. This reaction is a popular demonstrator of key principles in kinetics and reaction mechanisms. Here it is modified so as to highlight features of homogenous and heterogeneous photoinduced electron transfer (PET) (Pure Appl. Chem., 2007, 79, 293-465) reactions, i.e. blue bottle light experiments. The homogeneous blue bottle light experiment uses methylene blue, MB, as the photo-sensitizer and triethanolamine as the sacrificial electron donor. Visible light irradiation of this system leads to its rapid bleaching, followed by the ready restoration of its original colour upon shaking away from the light source. The heterogeneous blue bottle light experiment uses titania as the photo-sensitizer, MB as a redox indicator and glucose as the sacrificial electron donor. UVA light irradiation of this system leads to the rapid bleaching of the MB and the gradual restoration of its original colour with shaking and standing. The latter 'dark' step can be made facile and more demonstrator-friendly by using platinised titania particles. These two photochemical versions of the blue bottle experiment are used to explore the factors which underpin homogeneous and heterogeneous PET reactions and provide useful demonstrations of homogeneous and heterogeneous photochemistry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The kinetics of the recovery of the photoinduced transient bleaching of colloidal CdS in the presence of different electron acceptors are examined. In the presence of the zwitterionic viologen, N,N'-dipropyl-2,2'-bipyridinium disulphonate, excitation of colloidal CdS at different flash intensities generates a series of decay profiles which are superimposed when normalized. The shape of the decay curves are as predicted by a first-order activation-controlled model for a log-normal distribution of particles sizes. In contrast, the variation in flash intensity in the presence of a second viologen, N,N'-dipropyl-4,4'-bipyridinium sulphonate, generates normalized decay traces which broaden with increasing flash intensity. This behaviour is predicted by a zero-order diffusion-controlled model for a log-normal distribution of particle radii. The photoreduction of a number of other oxidants sensitized by colloidal CdS is examined and the shape of the decay kinetics interpreted via either the first- or zero-order kinetics models. The rate constants and activation energies derived using these models are consistent with the values expected for an activation- or diffusion-controlled reaction.