966 resultados para trajectory control
Resumo:
Seismic While Drilling (SWD) is a new wellbore seismic technique. It uses the vibrations produced by a drill-bit while drilling as a downhole seismic energy source. The continuous signals generated by the drill bit are recorded by a pilot sensor attached to the top of the drill-string. Seismic wave receivers positioned in the earth near its surface receive the seismic waves both directly and reflection from the geologic formations. The pilot signal is cross-correlated with the receiver signals to compute travel-times of the arrivals (direct arrival and reflected arrival) and attenuate incoherent noise. No downhole intrusmentation is required to obtain the data and the data recording does not interfere with the drilling process. These characteristics offer a method by which borehole seismic data can be acquired, processed, and interpreted while drilling. As a Measure-While-Drill technique. SWD provides real-time seismic data for use at the well site . This can aid the engineer or driller by indicating the position of the drill-bit and providing a look at reflecting horizons yet to be encountered by the drill-bit. Furthermore, the ease with which surface receivers can be deployed makes multi-offset VSP economically feasible. First, this paper is theoretically studying drill-bit wavefield, interaction mode between drill-bit and formation below drill-bit , the new technique of modern signal process was applied to seismic data, the seismic body wave radiation pattern of a working roller-cone drill-bit can be characterized by theoretical modeling. Then , a systematical analysis about the drill-bit wave was done, time-distance equation of seismic wave traveling was established, the process of seismic while drilling was simulated using the computer software adaptive modeling of SWD was done . In order to spread this technique, I have made trial SWD modeling during drilling. the paper sketches out the procedure for trial SWD modeling during drilling , the involved instruments and their functions, and the trial effect. Subsurface condition ahead of the drill-bit can be predicted drillstring velocity was obtained by polit sensor autocorrelation. Reference decovolution, the drillstring multiples in the polit signal are removed by reference deconvolution, the crosscorrelation process enhance the signal-to-noise power ratio, lithologies. Final, SWD provides real-time seismic data for use at the well site well trajectory control exploratory well find out and preserve reservoirs. intervel velocity was computed by the traveltime The results of the interval velocity determination reflects the pore-pressure present in the subsurface units ahead of the drill-bit. the presences of fractures in subsurface formation was detected by shear wave. et al.
Resumo:
This work presents the design and construction of an X-Y table of two degrees of freedom, as well as the development of a fuzzy system for its position and trajectory control. The table is composed of two bases that move perpendicularly to each other in the horizontal plane, and are driven by two DC motors. Base position is detected by position sensors attached to the motor axes. A data acquisition board performs the interface between a laptop and the plant. The fuzzy system algorithm was implemented in LabVIEW® programming environment that processes the sensors signals and determines the control variables values that drive the motors. Experimental results using position reference signals (step type signal) and straight and circular paths reference signals are presented to demonstrate the dynamic behavior of fuzzy system
Resumo:
This paper discusses the effects of thyristor controlled series compensator (TCSC), a series FACTS controller, on the transient stability of a power system. Trajectory sensitivity analysis (TSA) has been used to measure the transient stability condition of the system. The TCSC is modeled by a variable capacitor, the value of which changes with the firing angle. It is shown that TSA can be used in the design of the controller. The optimal locations of the TCSC-controller for different fault conditions can also be identified with the help of TSA. The paper depicts the advantage of the use of TCSC with a suitable controller over fixed capacitor operation.
Resumo:
In this paper, the trajectory tracking control of an autonomous underwater vehicle (AUVs) in six-degrees-of-freedom (6-DOFs) is addressed. It is assumed that the system parameters are unknown and the vehicle is underactuated. An adaptive controller is proposed, based on Lyapunov׳s direct method and the back-stepping technique, which interestingly guarantees robustness against parameter uncertainties. The desired trajectory can be any sufficiently smooth bounded curve parameterized by time even if consist of straight line. In contrast with the majority of research in this field, the likelihood of actuators׳ saturation is considered and another adaptive controller is designed to overcome this problem, in which control signals are bounded using saturation functions. The nonlinear adaptive control scheme yields asymptotic convergence of the vehicle to the reference trajectory, in the presence of parametric uncertainties. The stability of the presented control laws is proved in the sense of Lyapunov theory and Barbalat׳s lemma. Efficiency of presented controller using saturation functions is verified through comparing numerical simulations of both controllers.
Resumo:
A trajectory optimization approach is applied to the design of a sequence of open-die forging operations in order to control the transient thermal response of a large titanium alloy billet. The amount of time tire billet is soaked in furnace prior to each successive forging operation is optimized to minimize the total process time while simultaneously satisfying constraints on the maximum and minimum values of the billet's temperature distribution to avoid microstructural defects during forging. The results indicate that a "differential" heating profile is the most effective at meeting these design goals.
Resumo:
This paper presents an advanced single network adaptive critic (SNAC) aided nonlinear dynamic inversion (NDI) approach for simultaneous attitude control and trajectory tracking of a micro-quadrotor. Control of micro-quadrotors is a challenging problem due to its small size, strong coupling in pitch-yaw-roll and aerodynamic effects that often need to be ignored in the control design process to avoid mathematical complexities. In the proposed SNAC aided NDI approach, the gains of the dynamic inversion design are selected in such a way that the resulting controller behaves closely to a pre-synthesized SNAC controller for the output regulation problem. However, since SNAC is based on optimal control theory, it makes the dynamic inversion controller to operate near optimal and enhances its robustness property as well. More important, it retains two major benefits of dynamic inversion: (i) closed form expression of the controller and (ii) easy scalability to command tracking application even without any apriori knowledge of the reference command. Effectiveness of the proposed controller is demonstrated from six degree-of-freedom simulation studies of a micro-quadrotor. It has also been observed that the proposed SNAC aided NDI approach is more robust to modeling inaccuracies, as compared to the NDI controller designed independently from time domain specifications.
Resumo:
An innovative partially integrated guidance and control (PIGC) technique is developed for trajectory fixing by considering six degree-of-freedom (Six-DOF) nonlinear engagement dynamics for successful interception of ground targets by guided munitions. This trajectory fixing algorithm gives closed form solution, where two different trajectories are designed in x - h and x - y planes separately using simple quadratic equations. In order to follow designed trajectories commanded pitch and yaw rates are generated in outer loop using dynamic inversion technique. In inner loop these body rates are tracked using faster dynamic inversion loop by generating the necessary control surface deflections. Simulation studies with actuator dynamics have been carried out to account for three dimensional (3D) engagement geometry to demonstrate the usefulness of PIGC technique.
Resumo:
From a hybrid systems point of view, we provide a modeling framework and a trajectory tracking control design methodology for juggling systems. We present the main ideas and concepts in a one degree-of-freedom juggler, which consists of a ball bouncing on an actuated robot. We design a hybrid control strategy that, with only information of the ball's state at impacts, controls the ball to track a reference rhythmic pattern with arbitrary precision. We extend this hybrid control strategy to the case of juggling multiple balls with different rhythmic patterns. Simulation results for juggling of one and three balls with a single actuated robot are presented. © 2007 IEEE.
Resumo:
Using the MIT Serial Link Direct Drive Arm as the main experimental device, various issues in trajectory and force control of manipulators were studied in this thesis. Since accurate modeling is important for any controller, issues of estimating the dynamic model of a manipulator and its load were addressed first. Practical and effective algorithms were developed fro the Newton-Euler equations to estimate the inertial parameters of manipulator rigid-body loads and links. Load estimation was implemented both on PUMA 600 robot and on the MIT Serial Link Direct Drive Arm. With the link estimation algorithm, the inertial parameters of the direct drive arm were obtained. For both load and link estimation results, the estimated parameters are good models of the actual system for control purposes since torques and forces can be predicted accurately from these estimated parameters. The estimated model of the direct drive arm was them used to evaluate trajectory following performance by feedforward and computed torque control algorithms. The experimental evaluations showed that the dynamic compensation can greatly improve trajectory following accuracy. Various stability issues of force control were studied next. It was determined that there are two types of instability in force control. Dynamic instability, present in all of the previous force control algorithms discussed in this thesis, is caused by the interaction of a manipulator with a stiff environment. Kinematics instability is present only in the hybrid control algorithm of Raibert and Craig, and is caused by the interaction of the inertia matrix with the Jacobian inverse coordinate transformation in the feedback path. Several methods were suggested and demonstrated experimentally to solve these stability problems. The result of the stability analyses were then incorporated in implementing a stable force/position controller on the direct drive arm by the modified resolved acceleration method using both joint torque and wrist force sensor feedbacks.
Resumo:
A new autonomous ship collision free (ASCF) trajectory navigation and control system has been introduced with a new recursive navigation algorithm based on analytic geometry and convex set theory for ship collision free guidance. The underlying assumption is that the geometric information of ship environment is available in the form of a polygon shaped free space, which may be easily generated from a 2D image or plots relating to physical hazards or other constraints such as collision avoidance regulations. The navigation command is given as a heading command sequence based on generating a way point which falls within a small neighborhood of the current position, and the sequence of the way points along the trajectory are guaranteed to lie within a bounded obstacle free region using convex set theory. A neurofuzzy network predictor which in practice uses only observed input/output data generated by on board sensors or external sensors (or a sensor fusion algorithm), based on using rudder deflection angle for the control of ship heading angle, is utilised in the simulation of an ESSO 190000 dwt tanker model to demonstrate the effectiveness of the system.
Resumo:
In this paper, a trajectory tracking control problem for a nonholonomic mobile robot by the integration of a kinematic neural controller (KNC) and a torque neural controller (TNC) is proposed, where both the kinematic and dynamic models contains disturbances. The KNC is a variable structure controller (VSC) based on the sliding mode control theory (SMC), and applied to compensate the kinematic disturbances. The TNC is a inertia-based controller constituted of a dynamic neural controller (DNC) and a robust neural compensator (RNC), and applied to compensate the mobile robot dynamics, and bounded unknown disturbances. Stability analysis with basis on Lyapunov method and simulations results are provided to show the effectiveness of the proposed approach. © 2012 Springer-Verlag.
Resumo:
Motion control is a sub-field of automation, in which the position and/or velocity of machines are controlled using some type of device. In motion control the position, velocity, force, pressure, etc., profiles are designed in such a way that the different mechanical parts work as an harmonious whole in which a perfect synchronization must be achieved. The real-time exchange of information in the distributed system that is nowadays an industrial plant plays an important role in order to achieve always better performance, better effectiveness and better safety. The network for connecting field devices such as sensors, actuators, field controllers such as PLCs, regulators, drive controller etc., and man-machine interfaces is commonly called fieldbus. Since the motion transmission is now task of the communication system, and not more of kinematic chains as in the past, the communication protocol must assure that the desired profiles, and their properties, are correctly transmitted to the axes then reproduced or else the synchronization among the different parts is lost with all the resulting consequences. In this thesis, the problem of trajectory reconstruction in the case of an event-triggered communication system is faced. The most important feature that a real-time communication system must have is the preservation of the following temporal and spatial properties: absolute temporal consistency, relative temporal consistency, spatial consistency. Starting from the basic system composed by one master and one slave and passing through systems made up by many slaves and one master or many masters and one slave, the problems in the profile reconstruction and temporal properties preservation, and subsequently the synchronization of different profiles in network adopting an event-triggered communication system, have been shown. These networks are characterized by the fact that a common knowledge of the global time is not available. Therefore they are non-deterministic networks. Each topology is analyzed and the proposed solution based on phase-locked loops adopted for the basic master-slave case has been improved to face with the other configurations.