824 resultados para training methods
Resumo:
Many position stands and review papers have refuted the myths associated with resistance training (RT) in children and adolescents. With proper training methods, RT for children and adolescents can be relatively safe and improve overall health. The objective of this position paper and review is to highlight research and provide recommendations in aspects of RT that have not been extensively reported in the pediatric literature. In addition to the well-documented increases in muscular strength and endurance, RT has been used to improve function in pediatric patients with cystic fibrosis, cerebral palsy and burn victims. Increases in children’s muscular strength have been attributed primarily to neurological adaptations due to the disproportionately higher increase in muscle strength than in muscle size. Although most studies using anthropometric measures have not shown significant muscle hypertrophy in children, more sensitive measures such as magnetic resonance imaging and ultrasound have suggested hypertrophy may occur. There is no minimum age for RT for children. However the training and instruction must be appropriate for children and adolescents involving a proper warm-up, cool-down and an appropriate choice of exercises. It is recommended that low-to-moderate intensity resistance should be utilized 2-3 times per week on non-consecutive days, with 1-2 sets initially, progressing to 4 sets of 8-15 repetitions for 8-12 exercises. These exercises can include more advanced movements such as Olympic style lifting, plyometrics and balance training, which can enhance strength, power, co-ordination and balance. However specific guidelines for these more advanced techniques need to be established for youth. In conclusion, a RT program that is within a child’s or adolescent’s capacity, involves gradual progression under qualified instruction and supervision with appropriately sized equipment can involve more advanced or intense RT exercises which can lead to functional (i.e. muscular strength, endurance, power, balance and co-ordination) and health benefits.
Resumo:
An increase in altitude leads to a proportional fall in the barometric pressure, and a decrease in atmospheric oxygen pressure, producing hypobaric hypoxia that affects, in different degrees, all body organs, systems and functions. The chronically reduced partial pressure of oxygen causes that individuals adapt and adjust to physiological stress. These adaptations are modulated by many factors, including the degree of hypoxia related to altitude, time of exposure, exercise intensity and individual conditions. It has been established that exposure to high altitude is an environmental stressor that elicits a response that contributes to many adjustments and adaptations that influence exercise capacity and endurance performance. These adaptations include in crease in hemoglobin concentration, ventilation, capillary density and tissue myoglobin concentration. However, a negative effect in strength and power is related to a decrease in muscle fiber size and body mass due to the decrease in the training intensity. Many researches aim at establishing how training or living at high altitudes affects performance in athletes. Training methods, such as living in high altitudes training low, and training high-living in low altitudes have been used to research the changes in the physical condition in athletes and how the physiological adaptations to hypoxia can enhanceperformance at sea level. This review analyzes the literature related to altitude training focused on how physiological adaptations to hypoxic environments influence performance, and which protocols are most frequently used to train in high altitudes.
Resumo:
Objective: To describe the training undertaken by pharmacists employed in a pharmacist-led information technology-based intervention study to reduce medication errors in primary care (PINCER Trial), evaluate pharmacists’ assessment of the training, and the time implications of undertaking the training. Methods: Six pharmacists received training, which included training on root cause analysis and educational outreach, to enable them to deliver the PINCER Trial intervention. This was evaluated using self-report questionnaires at the end of each training session. The time taken to complete each session was recorded. Data from the evaluation forms were entered onto a Microsoft Excel spreadsheet, independently checked and the summary of results further verified. Frequencies were calculated for responses to the three-point Likert scale questions. Free-text comments from the evaluation forms and pharmacists’ diaries were analysed thematically. Key findings: All six pharmacists received 22 hours of training over five sessions. In four out of the five sessions, the pharmacists who completed an evaluation form (27 out of 30 were completed) stated they were satisfied or very satisfied with the various elements of the training package. Analysis of free-text comments and the pharmacists’ diaries showed that the principles of root cause analysis and educational outreach were viewed as useful tools to help pharmacists conduct pharmaceutical interventions in both the study and other pharmacy roles that they undertook. The opportunity to undertake role play was a valuable part of the training received. Conclusions: Findings presented in this paper suggest that providing the PINCER pharmacists with training in root cause analysis and educational outreach contributed to the successful delivery of PINCER interventions and could potentially be utilised by other pharmacists based in general practice to deliver pharmaceutical interventions to improve patient safety.
Resumo:
Purpose: Exercise training restores innate immune system cell function in post-myocardial infarction (post-MI) rats. However, studies of the involvement of lymphocyte (Ly) in the setting of the congestive heart failure (CHF) are few. To address this issue, we investigated the function of Ly obtained from cervical lymph nodes from post-MI CHF rats submitted to treadmill running training. Methods: Twenty-five male Wistar rats were randomly assigned to the following groups: rats submitted to ligation of the left coronary artery, which were sedentary (MI-S, N= 7, only limited activity) or trained (MI-T, N= 6, on a treadmill (0% grade at 13-20 m.m(-1)) for 60 min.d(-1), 5 d.wk(-1), for 8-10 wk); or sham-operated rats, which were sedentary (sham-S, N = 6) or trained (sham-T, N = 6). The incorporation of [2-C-14]-thymidine by Ly cultivated in the presence of concanavalin A (Con A) and lipopolysaccharide (LPS), cytokine production by Ly cultivated in the presence of phytohemagglutinin (PHA), and plasma concentration of glutamine were assessed in all groups, 48 h after the last exercise session. Results: Proliferative capacity was increased, following incubation with Con-A in the MI groups, when compared with the sham counterparts. When incubated in the presence of PHA, MI-S produced more IL-4 (96%) than sham-S (P < 0.001). The training protocol induced a 2.2-fold increase in the production of interleukin-2 (P < 0.001) of the cells obtained from the cervical lymph nodes of MI-T, compared with MI-S. Conclusion: The moderate endurance training protocol caused an increase in IL-2 production, and a trend toward the reversion of the Th-1/Th-2 imbalance associated with IL-4 production increased in the post-MI CHF animal model.
Resumo:
The objective of this study was to analyze the effect of two different high-intensity interval training (HIT) programs on selected aerobic physiological indices and 1500 and 5000 m running performance in well-trained runners. The following tests were completed (n = 17): (i) incremental treadmill test to determine maximal oxygen uptake (VO2max), running velocity associated with VO2 max (VVO2max), and the velocity corresponding to 3.5 mmol/L of blood lactate concentration (vOBLA); (ii) submaximal constant-intensity test to determine running economy (RE); and (iii) 1500 and 5000 m time trials on a 400 m track. Runners were then randomized into 95% vVO(2max) or 100% vVO(2max) groups, and undertook a 4 week training program consisting of 2 HIT sessions (performed at 95% or 100% vVO(2max), respectively) and 4 submaximal run sessions per week. Runners were retested on all parameters at the completion of the training program. The VO2 max values were not different after training for both groups. There was a significant increase in post-training vVO(2 max), RE, and 1500 in running performance in the 100% vVO(2 max) group. The vOBLA and 5000 m running performance were significantly higher after the training period for both groups. We conclude that vOBLA and 5000 m running performance can be significantly improved in well-trained runners using a 4 week training program consisting of 2 HIT sessions (performed at 95% or 100% vVO(2max)) and 4 submaximal run sessions per week. However, the improvement in vVO(2 max), RE, and 1500 in running performance seems to be dependent on the HIT program at 100% vVO(2 max).
Resumo:
The objective of this study was to compare the effect of different strength training protocols added to endurance training on running economy (RE). Sixteen well-trained runners (27.4 +/- 4.4 years; 62.7 +/- 4.3 kg; 166.1 +/- 5.0 cm), were randomized into two groups: explosive strength training (EST) (n = 9) and heavy weight strength training (HWT) (n = 7) group. They performed the following tests before and after 4 weeks of training: 1) incremental treadmill test to exhaustion to determine of peak oxygen uptake and the velocity corresponding to 3.5 mM of blood lactate concentration; 2) submaximal constant-intensity test to determine RE; 3) maximal countermovernent jump test and; 4) one repetition maximal strength test in leg press. After the training period, there was an improvement in RE only in the HWT group (HWT = 47.3 +/- 6.8 vs. 44.3 +/- 4.9 ml.kg(-1) -min(-1); EST = 46.4 +/- 4.1 vs. 45.5 +/- 4.1 ml.kg(-1) .min(-1)). In conclusion, a short period of traditional strength training can improve RE in well-trained runners, but this improvement can be dependent on the strength training characteristics. When comparing to explosive training performed in the same equipment, heavy weight training seems to be more efficient for the improvement of RE.
Resumo:
Objective: The purpose of the present study was to examine insulin secretion in rats submitted to protein restriction and nutritional recovery associated or not to physical training. Methods: The experiment was designed in two sets of five weeks each. In the first set the rats were fed a nonnal-protein diet(17%-control group) or a low-protein diet (6%-malnourished group) for five weeks. After this, all animals were fed the 17% protein diet and separated into four groups: sedentary control(SC); trained eontrol(TC); sedentary recovered(SR) and trained recovered(TR). TC and TR rats performed swimming exercise. Results: The results indicated efficiency of the 6% protein diet in producing signs of malnutrition, as reduction in body weight gain and serum albumin levels, as well as liver fat. Serum insulin in the fed state and insulin secretion by isolated pancreatic islets in response to glucose were Keduced,but peripheral sensitivity to insulin was increased and glucose tolerance was not changed in the protein deficient rats, indicating adaptation to malnutrition. Diet protocol for nutritional recovery was efficient in repairing body weight gain, serum albumin and liver fat levels of the previously malnourished rats. Glucose induced insulin release by pancreatic islets remained low after nutritional recovery. Insulin secretion by the islets isolated from rats submitted to exercise training during nutritional recovery was improved when compared with the sedentary animals. Conclusion: This indicates that exercise training may be useful in the treatment of protein calorie malnutrition, concerning to glucose induced insulip secretion.
Resumo:
The aim of this study was to develop an experimental protocol for endurance swimming periodization training in rats similar to high performance training in humans, and compare it to continuous training. Three groups of male Wistar rats (90 days old) were allocated to Sedentary Control (SC); Continuous Training (CT); and Periodized Experimental Training (PET) groups. PET and CT trained 5 days/week, over five weeks, CT: continuous training supporting a 5% body mass (bm) load for 40 min/day; PET: training subdivided into basic, specific, and taper periods, with overload changed daily (volume-intensity, continuous, and interval training). Total training overload was quantified (% bm X exercise time in training session) and equalized for the two trained groups. Glucose ([ 3H]2-deoxyglucose) uptake, incorporation to glycogen (synthesis), glucose oxidation (CO 2 production), and lactate production from [U- 14C]glucose by soleus muscle strips incubated in presence of insulin (100μU/mL) were evaluated 48h after the last training session. The load equivalent at 5.5mM blood lactate concentration ([La-5.5]) was determined in the incremental test. Lactate production was similar in all groups. PET presented higher glucose uptake (59%) than SC, and higher glycogen synthesis (51 and 22%) and glucose oxidation (147 and 178%) than SC and CT, respectively. CT presented higher glycogen synthesis rates (23%) than SC. Load [La-5.5] was similar between trained groups and higher than SC. PET presented higher values for glucose metabolism than CT and SC. These results open up new perspectives for studying training methods used in high performance sport through swimming exercise in rats.
Resumo:
Background. Ideal training methods that could ensure best peritoneal dialysis (PD) outcome have not been defined in previous reports. The aim of the present study was to evaluate the impact of training characteristics on peritonitis rates in a large Brazilian cohort.Methods. Incident patients with valid data on training recruited in the Brazilian Peritoneal Dialysis Multicenter Study (BRAZPD II) from January 2008 to January 2011 were included. Peritonitis was diagnosed according to International Society for Peritoneal Dialysis guidelines; incidence rate of peritonitis (episodes/patient-months) and time to the first peritonitis were used as end points.Results. Two thousand two hundred and forty-three adult patients were included in the analysis: 59 +/- 16 years old, 51.8% female, 64.7% with <= 4 years of education. The median training time was 15 h (IQI 10-20 h). Patients were followed for a median of 11.2 months (range 3-36.5). The overall peritonitis rate was 0.29 per year at risk (1 episode/41 patient-months). The mean number of hours of training per day was 1.8 +/- 2.4. Less than 1 h of training/day was associated with higher incidence rate when compared with the intervals of 1-2 h/day (P = 0.03) and > 2 h/day (P = 0.02). Patients who received a cumulative training of > 15 h had significantly lower incidence of peritonitis compared with < 15 h (0.26 per year at risk versus 0.32 per year at risk, P = 0.01). The presence of a caregiver and the number of people trained were not significantly associated with peritonitis incidence rate. Training in the immediate 10 days after implantation of the catheter was associated with the highest peritonitis rate (0.32 per year), compared with training prior to catheter implantation (0.28 per year) or > 10 days after implantation (0.23 per year). More experienced centers had a lower risk for the first peritonitis (P = 0.003).Conclusions. This is the first study to analyze the association between training characteristics and outcomes in a large cohort of PD patients. Low training time (particularly < 15 h), smaller center size and the timing of training in relation to catheter implantation were associated with a higher incidence of peritonitis. These results support the recommendation of a minimum amount of training hours to reduce peritonitis incidence regardless of the number of hours trained per day.
Resumo:
Abstract We aimed to investigate the effects of creatine (Cr) supplementation on the plasma lipid profile in sedentary male subjects undergoing aerobic training. Methods Subjects (n = 22) were randomly divided into two groups and were allocated to receive treatment with either creatine monohydrate (CR) (~20 g·day-1 for one week followed by ~10 g·day-1 for a further eleven weeks) or placebo (PL) (dextrose) in a double blind fashion. All subjects undertook moderate intensity aerobic training during three 40-minute sessions per week, over 3 months. High-density lipoprotein cholesterol (HDL), low-density lipoprotein cholesterol (LDL), very low-density lipoprotein cholesterol (VLDL), total cholesterol (TC), triglyceride (TAG), fasting insulin and fasting glycemia were analyzed in plasma. Thereafter, the homeostasis model assessment (HOMA) was calculated. Tests were performed at baseline (Pre) and after four (Post 4), eight (Post 8) and twelve (Post 12) weeks. Results We observed main time effects in both groups for HDL (Post 4 versus Post 8; P = 0.01), TAG and VLDL (Pre versus Post 4 and Post 8; P = 0.02 and P = 0.01, respectively). However, no between group differences were noted in HDL, LDL, CT, VLDL and TAG. Additionally, fasting insulin, fasting glycemia and HOMA did not change significantly. Conclusion These findings suggest that Cr supplementation does not exert any additional effect on the improvement in the plasma lipid profile than aerobic training alone.
Resumo:
This paper describes a case study of a labor-based ergonomics-training program that makes use of some effective worker training methods. The program focus was on ergonomics awareness and back injury prevention for nursing home workers. It was developed and conducted by a not-for-profit organization affiliated with the Service Employees International Union. Training methods included the train-the-trainer model and the small group activity method. The investigation also compared the program components with those identified by the Occupational Safety and Health Administration (OSHA) as being key elements in effective safety training.
Resumo:
BACKGROUND Currently only a few reports exist on how to prepare medical students for skills laboratory training. We investigated how students and tutors perceive a blended learning approach using virtual patients (VPs) as preparation for skills training. METHODS Fifth-year medical students (N=617) were invited to voluntarily participate in a paediatric skills laboratory with four specially designed VPs as preparation. The cases focused on procedures in the laboratory using interactive questions, static and interactive images, and video clips. All students were asked to assess the VP design. After participating in the skills laboratory 310 of the 617 students were additionally asked to assess the blended learning approach through established questionnaires. Tutors' perceptions (N=9) were assessed by semi-structured interviews. RESULTS From the 617 students 1,459 VP design questionnaires were returned (59.1%). Of the 310 students 213 chose to participate in the skills laboratory; 179 blended learning questionnaires were returned (84.0%). Students provided high overall acceptance ratings of the VP design and blended learning approach. By using VPs as preparation, skills laboratory time was felt to be used more effectively. Tutors perceived students as being well prepared for the skills laboratory with efficient uses of time. CONCLUSION The overall acceptance of the blended learning approach was high among students and tutors. VPs proved to be a convenient cognitive preparation tool for skills training.
Resumo:
Purpose: This systematic review examines what is known about injuries in strength training. Methods: A systematic search was performed in PubMed and SportDiscus. Studies were included if they examined powerlifters, weightlifters, strongman athletes, bodybuilding athletes, individuals who undertook recreational weight training or weight training to complement athletic performance. Exposure variables were incidence, severity and body part injury. Results: After examining 1214 titles and abstracts, 62 articles were identified as potentially relevant. Finally, 11 were included in this systematic review. Conflicting results were reported on the relationships between injury definition and incidence or severity recorded. The lower back followed by the shoulder and knee are the most frequently affected areas in strength sports. Conclusion: Strength training is safe. However, the variety of injury definitions has makes it difficult to compare different studies in this field. New styles of reporting injuries have appeared, and could make increases these ratios. If methodological limitations in measuring incidence rate and severity injuries can be resolved, more work can be conducted to define the real incidence rate, compare it with others sports, and explore cause and effect relationships in randomized controlled trials. Key Words: strength training, injuries, specific strength sports, severity
Resumo:
As the first step toward developing benchmarks for travel counselor training, the authors identify the methods and characteristics of existing travel counselor-training programs in the U.S. Responses from 30 out of 50 state tourism agencies indicate that 12 different methods of training are emplyed; however, usage and satisfaction with these various training methods vary.
Resumo:
Technological advancements and the ever-evolving demands of a global marketplace may have changed the way in which training is designed, implemented, and even managed, but the ultimate goal of organizational training programs remains the same: to facilitate learning of a knowledge, skill, or other outcome that will yield improvement in employee performance on the job and within the organization (Colquitt, LePine, & Noe, 2000; Tannenbaum & Yukl, 1992). Studies of organizational training have suggested medium to large effect sizes for the impact of training on employee learning (e.g., Arthur, Bennett, Edens, & Bell, 2003; Burke & Day, 1986). However, learning may be differentially affected by such factors as the (1) level and type of preparation provided prior to training, (2) targeted learning outcome, (3) training methods employed, and (4) content and goals of training (e.g., Baldwin & Ford, 1988). A variety of pre-training interventions have been identified as having the potential to enhance learning from training and practice (Cannon-Bowers, Rhodenizer, Salas, & Bowers, 1998). Numerous individual studies have been conducted examining the impact of one or more of these pre-training interventions on learning. ^ I conducted a meta-analytic examination of the effect of these pre-training interventions on cognitive, skill, and affective learning. Results compiled from 359 independent studies (total N = 37,038) reveal consistent positive effects for the role of pre-training interventions in enhancing learning. In most cases, the provision of a pre-training intervention explained approximately 5–10% of the variance in learning, and in some cases, explained up to 40–50% of variance in learning. Overall attentional advice and meta-cognitive strategies (as compared with advance organizers, goal orientation, and preparatory information) seem to result in the most consistent learning gains. Discussion focuses on the most beneficial match between an intervention and the learning outcome of interest, the most effective format of these interventions, and the most appropriate circumstances under which these interventions should be utilized. Also highlighted are the implications of these results for practice, as well as propositions for important avenues for future research. ^