964 resultados para traffic conflict techniques
Resumo:
Texas Department of Transportation, Austin
Resumo:
Turner-Fairbank Highway Research Center, McLean, Va.
Resumo:
Federal Highway Administration, Washington, D.C.
Resumo:
The traffic conflict technique (TCT) is a powerful technique applied in road traffic safety assessment as a surrogate of the traditional accident data analysis. It has subdued the conceptual and implemental weaknesses of the accident statistics. Although this technique has been applied effectively in road traffic, it has not been practised well in marine traffic even though this traffic system has some distinct advantages in terms of having a monitoring system. This monitoring system can provide navigational information as well as other geometric information of the ships for a larger study area over a longer time period. However, for implementing the TCT in the marine traffic system, it should be examined critically to suit the complex nature of the traffic system. This paper examines the suitability of the TCT to be applied to marine traffic and proposes a framework for a follow up comprehensive conflict study.
Resumo:
In recent years, there has been an upsurge of research interest in cooperative wireless communications in both academia and industry. This article presents a simple overview of the pivotal topics in both mobile station (MS)- and base station (BS)- assisted cooperation in the context of cellular radio systems. Owing to the ever-increasing amount of literature in this particular field, this article is by no means exhaustive, but is intended to serve as a roadmap by assembling a representative sample of recent results and to stimulate further research. The emphasis is initially on relay-base cooperation, relying on network coding, followed by the design of cross-layer cooperative protocols conceived for MS cooperation and the concept of coalition network element (CNE)-assisted BS cooperation. Then, a range of complexity and backhaul traffic reduction techniques that have been proposed for BS cooperation are reviewed. A more detailed discussion is provided in the context of MS cooperation concerning the pros and cons of dispensing with high-complexity, power-hungry channel estimation. Finally, generalized design guidelines, conceived for cooperative wireless communications, are presented.
Resumo:
Cloud computing is a technological advancementthat provide resources through internet on pay-as-you-go basis.Cloud computing uses virtualisation technology to enhance theefficiency and effectiveness of its advantages. Virtualisation isthe key to consolidate the computing resources to run multiple instances on each hardware, increasing the utilization rate of every resource, thus reduces the number of resources needed to buy, rack, power, cool, and manage. Cloud computing has very appealing features, however, lots of enterprises and users are still reluctant to move into cloud due to serious security concerns related to virtualisation layer. Thus, it is foremost important to secure the virtual environment.In this paper, we present an elastic framework to secure virtualised environment for trusted cloud computing called Server Virtualisation Security System (SVSS). SVSS provide security solutions located on hyper visor for Virtual Machines by deploying malicious activity detection techniques, network traffic analysis techniques, and system resource utilization analysis techniques.SVSS consists of four modules: Anti-Virus Control Module,Traffic Behavior Monitoring Module, Malicious Activity Detection Module and Virtualisation Security Management Module.A SVSS prototype has been deployed to validate its feasibility,efficiency and accuracy on Xen virtualised environment.
Resumo:
Arizona Department of Transportation, Phoenix
Resumo:
Texas State Department of Highways and Public Transportation, Transportation Planning Division, Austin
Resumo:
Michigan Department of Transportation, Lansing
Resumo:
Federal Highway Administration, Office of Safety and Traffic Operations Research and Development, McLean, Va.
Resumo:
Federal Highway Administration, Washington, D.C.
Resumo:
Texas Department of Transportation, Austin
Resumo:
Federal Highway Administration, Office of Safety and Traffic Operations Research and Development, McLean, Va.
Resumo:
Federal Highway Administration, Office of Research, Washington, D.C.
Resumo:
In China in particular, large, planned special events (e.g., the Olympic Games, etc.) are viewed as great opportunities for economic development. Large numbers of visitors from other countries and provinces may be expected to attend such events, bringing in significant tourism dollars. However, as a direct result of such events, the transportation system is likely to face great challenges as travel demand increases beyond its original design capacity. Special events in central business districts (CBD) in particular will further exacerbate traffic congestion on surrounding freeway segments near event locations. To manage the transportation system, it is necessary to plan and prepare for such special events, which requires prediction of traffic conditions during the events. This dissertation presents a set of novel prototype models to forecast traffic volumes along freeway segments during special events. Almost all research to date has focused solely on traffic management techniques under special event conditions. These studies, at most, provided a qualitative analysis and there was a lack of an easy-to-implement method for quantitative analyses. This dissertation presents a systematic approach, based separately on univariate time series model with intervention analysis and multivariate time series model with intervention analysis for forecasting traffic volumes on freeway segments near an event location. A case study was carried out, which involved analyzing and modelling the historical time series data collected from loop-detector traffic monitoring stations on the Second and Third Ring Roads near Beijing Workers Stadium. The proposed time series models, with expected intervention, are found to provide reasonably accurate forecasts of traffic pattern changes efficiently. They may be used to support transportation planning and management for special events.