617 resultados para tracers


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the U.S., coal fired power plants produce over 136 million tons of coal combustion residuals (CCRs) annually. CCRs are enriched in toxic elements, and their leachates can have significant impacts on water quality. Here we report the boron and strontium isotopic ratios of leaching experiments on CCRs from a variety of coal sources (Appalachian, Illinois, and Powder River Basins). CCR leachates had a mostly negative δ(11)B, ranging from -17.6 to +6.3‰, and (87)Sr/(86)Sr ranging from 0.70975 to 0.71251. Additionally, we utilized these isotopic ratios for tracing CCR contaminants in different environments: (1) the 2008 Tennessee Valley Authority (TVA) coal ash spill affected waters; (2) CCR effluents from power plants in Tennessee and North Carolina; (3) lakes and rivers affected by CCR effluents in North Carolina; and (4) porewater extracted from sediments in lakes affected by CCRs. The boron isotopes measured in these environments had a distinctive negative δ(11)B signature relative to background waters. In contrast (87)Sr/(86)Sr ratios in CCRs were not always exclusively different from background, limiting their use as a CCR tracer. This investigation demonstrates the validity of the combined geochemical and isotopic approach as a unique and practical identification method for delineating and evaluating the environmental impact of CCRs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Various contaminants which can be aerobically degraded find their way directly or indirectly into surface water bodies. The reaeration coefficient (K2) characterises the rate at which oxygen can transfer from the atmosphere across the air-water interface following oxygen depletion in a water body. Other mechanisms (like advection, dispersion and transient storage) determine how quickly the contaminants can spread in the water, affecting their spatial and temporal concentrations. Tracer methods involving injection of a gas into the water body have traditionally been used for direct (in-situ) measurement of K2 in a given reach. This paper shows how additional modelling of tracer test results can be used to quantify also hydrodynamic mechanisms (e.g. dispersion and storage exchange coefficients, etc.). Data from three tracer tests conducted in the River Lagan (Northern Ireland) using an inert gas (krypton, Kr) are re-analysed using two solute transport models (ADM, TSM) and an inverse-modelling framework (OTIS-P). Results for K2 are consistent with previously published values for this reach (K2(20)~10-40 d-1). The storage area constituted 30-60% of the main cross-section area and the storage exchange rate was between 2.5×10-3-3.2×10-3s-1. The additional hydrodynamic parameters obtained give insight into transport and dispersion mechanisms within the reach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Environmental tracers continue to provide an important tool for understanding the source, flow and mixing dynamics of water resource systems through their imprint on the system or their sensitivity to alteration within it. However, 60 years or so after the first isotopic tracer studies were applied to hydrology, the use of isotopes and other environmental tracers are still not routinely necessarily applied in hydrogeological and water resources investigations where appropriate. There is therefore a continuing need to promote their use for developing sustainable management policies for the protection of water resources and the aquatic environment. This Special Issue focuses on the robustness or fitness-for-purpose of the application and use of environmental tracers in addressing problems and opportunities scientifically, to promote their wider use and to address substantive issues of vulnerability, sustainability, and uncertainty in (ground)water resources systems and their management.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gravel aquifers act as important potable water sources in central western Europe yet they are subject to numerous contamination pressures. Compositional and textural heterogeneity makes protection zone delineation around groundwater supplies in these units challenging; artificial tracer testing aids characterization. This paper reappraises previous tracer test results in light of new geological and microbiological data. Comparative passive gradient testing, using a fluorescent solute (Uranine), virus (H40/1 bacteriophage), and comparably sized bacterial tracers Escherichia coli and Pseudomonas putida, was used to investigate a calcareous gravel aquifer’s ability to remove microbiological contaminants at a test site near Munich, Germany. Test results revealed E. coli relative recoveries could exceed those of H40/1 at monitoring wells 10 m and 20 m from an injection well by almost four times; P. putida recoveries varied by a factor of up to three between wells. Application of filtration theory suggested greater attenuation of H40/1 relative to similarly charged E. coli occurred due to differences in microorganism size, while estimated collision efficiencies appeared comparable. By contrast, more positively charged P. putida experienced greater attenuation at one monitoring point, while lower attenuation rates at the second location indicated the influence of geochemical heterogeneity. Test findings proved consistent with observations from nearby fresh outcrops that suggested thin open framework gravel beds dominated mass transport in the aquifer, while discrete intervals containing stained clasts reflect localized geochemical heterogeneity. Study results highlight the utility of reconciling outcrop observations with artificial tracer test responses, using microbiological tracers with well-defined properties, to characterize aquifer heterogeneity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Diverse land use activities can elevate risk of microbiological contamination entering stream headwaters. Spatially distributed water quality monitoring carried out across a 17km(2) agricultural catchment aimed to characterize microbiological contamination reaching surface water and investigate whether winter agricultural land use restrictions proved effective in addressing water quality degradation. Combined flow and concentration data revealed no significant difference in fecal indicator organism (FIO) fluxes in base flow samples collected during the open and prohibited periods for spreading organic fertilizer, while relative concentrations of Escherichia coli, fecal streptococci and sulfite reducing bacteria indicated consistently fresh fecal pollution reached aquatic receptors during both periods. Microbial source tracking, employing Bacteroides 16S rRNA gene markers, demonstrated a dominance of bovine fecal waste in river water samples upstream of a wastewater treatment plant discharge during open periods. This contrasted with responses during prohibited periods where human-derived signatures dominated. Differences in microbiological signature, when viewed with hydrological data, suggested that increasing groundwater levels restricted vertical infiltration of effluent from on-site wastewater treatment systems and diverted it to drains and surface water. Study results reflect seasonality of contaminant inputs, while suggesting winter land use restrictions can be effective in limiting impacts of agricultural wastes to base flow water quality.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Senior thesis written for Oceanography 444

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, the extraction properties of a synergistic system consisting of 2,6-bis-(benzoxazolyl)-4-dodecyloxylpyridine (BODO) and 2-bromodecanoic acid (HA) in tert-butyl benzene (TBB) have been investigated as a function of ionic strength by varying the nitrate ion and perchlorate ion concentrations. The influence of the hydrogen ion concentration has also been investigated. Distribution ratios between 0.03-12 and 0.003-0.8 have been found for Am(III) and Eu(HI), respectively, but there were no attempts to maximize these values. It has been shown that the distribution ratios decrease with increasing amounts of ClO4-, NO3-, and H+. The mechanisms, however, by which the decrease occurs, are different. In the case of increasing perchlorate ion concentration, the decrease in extraction is linear in a log-log plot of the distribution ratio vs. the ionic strength, while in the nitrate case the complexation between nitrate and Am or Eu increases at high nitrate ion concentrations and thereby decreases the distribution ratio in a non-linearway. The decrease in extraction could be caused by changes in activity coefficients that can be explained with specific ion interaction theory (SIT); shielding of the metal ions, and by nitrate complexation with Am and Eu as competing mechanism at high ionic strengths. The separation factor between Am and Eu reaches a maximum at similar to1 M nitrate ion concentration. Thereafter the values decrease with increasing nitrate ion concentrations.