998 resultados para topological group


Relevância:

30.00% 30.00%

Publicador:

Resumo:

There exists various suggestions for building a functional and a fault-tolerant large-scale quantum computer. Topological quantum computation is a more exotic suggestion, which makes use of the properties of quasiparticles manifest only in certain two-dimensional systems. These so called anyons exhibit topological degrees of freedom, which, in principle, can be used to execute quantum computation with intrinsic fault-tolerance. This feature is the main incentive to study topological quantum computation. The objective of this thesis is to provide an accessible introduction to the theory. In this thesis one has considered the theory of anyons arising in two-dimensional quantum mechanical systems, which are described by gauge theories based on so called quantum double symmetries. The quasiparticles are shown to exhibit interactions and carry quantum numbers, which are both of topological nature. Particularly, it is found that the addition of the quantum numbers is not unique, but that the fusion of the quasiparticles is described by a non-trivial fusion algebra. It is discussed how this property can be used to encode quantum information in a manner which is intrinsically protected from decoherence and how one could, in principle, perform quantum computation by braiding the quasiparticles. As an example of the presented general discussion, the particle spectrum and the fusion algebra of an anyon model based on the gauge group S_3 are explicitly derived. The fusion algebra is found to branch into multiple proper subalgebras and the simplest one of them is chosen as a model for an illustrative demonstration. The different steps of a topological quantum computation are outlined and the computational power of the model is assessed. It turns out that the chosen model is not universal for quantum computation. However, because the objective was a demonstration of the theory with explicit calculations, none of the other more complicated fusion subalgebras were considered. Studying their applicability for quantum computation could be a topic of further research.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A smooth map is said to be stable if small perturbations of the map only differ from the original one by a smooth change of coordinates. Smoothly stable maps are generic among the proper maps between given source and target manifolds when the source and target dimensions belong to the so-called nice dimensions, but outside this range of dimensions, smooth maps cannot generally be approximated by stable maps. This leads to the definition of topologically stable maps, where the smooth coordinate changes are replaced with homeomorphisms. The topologically stable maps are generic among proper maps for any dimensions of source and target. The purpose of this thesis is to investigate methods for proving topological stability by constructing extremely tame (E-tame) retractions onto the map in question from one of its smoothly stable unfoldings. In particular, we investigate how to use E-tame retractions from stable unfoldings to find topologically ministable unfoldings for certain weighted homogeneous maps or germs. Our first results are concerned with the construction of E-tame retractions and their relation to topological stability. We study how to construct the E-tame retractions from partial or local information, and these results form our toolbox for the main constructions. In the next chapter we study the group of right-left equivalences leaving a given multigerm f invariant, and show that when the multigerm is finitely determined, the group has a maximal compact subgroup and that the corresponding quotient is contractible. This means, essentially, that the group can be replaced with a compact Lie group of symmetries without much loss of information. We also show how to split the group into a product whose components only depend on the monogerm components of f. In the final chapter we investigate representatives of the E- and Z-series of singularities, discuss their instability and use our tools to construct E-tame retractions for some of them. The construction is based on describing the geometry of the set of points where the map is not smoothly stable, discovering that by using induction and our constructional tools, we already know how to construct local E-tame retractions along the set. The local solutions can then be glued together using our knowledge about the symmetry group of the local germs. We also discuss how to generalize our method to the whole E- and Z- series.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The variation of resistivity in an amorphous As30Te70-xSix system of glasses with high pressure has been studied for pressures up to 8 GPa. It is found that the electrical resistivity and the conduction activation energy decrease continuously with increase in pressure, and samples become metallic in the pressure range 1.0-2.0 GPa. Temperature variation studies carried out at a pressure of 0.92 GPa show that the activation energies lie in the range 0.16-0.18eV. Studies on the composition/average co-ordination number (r) dependence of normalized electrical resistivity at different pressures indicate that rigidity percolation is extended, the onset of the intermediate phase is around (r) = 2.44, and completion at (r) = 2.56, respectively, while the chemical threshold is at (r) = 2.67. These results compare favorably with those obtained from electrical switching and differential scanning calorimetric studies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is shown that the euclideanized Yukawa theory, with the Dirac fermion belonging to an irreducible representation of the Lorentz group, is not bounded from below. A one parameter family of supersymmetric actions is presented which continuously interpolates between the N = 2 SSYM and the N = 2 supersymmetric topological theory. In order to obtain a theory which is bounded from below and satisfies Osterwalder-Schrader positivity, the Dirac fermion should belong to a reducible representation of the Lorentz group and the scalar fields have to be reinterpreted as the extra components of a higher dimensional vector field.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Features of homologous relationship of proteins can provide us a general picture of protein universe, assist protein design and analysis, and further our comprehension of the evolution of organisms. Here we carried Out a Study of the evolution Of protein molecules by investigating homologous relationships among residue segments. The motive was to identify detailed topological features of homologous relationships for short residue segments in the whole protein universe. Based on the data of a large number of non-redundant Proteins, the universe of non-membrane polypeptide was analyzed by considering both residue mutations and structural conservation. By connecting homologous segments with edges, we obtained a homologous relationship network of the whole universe of short residue segments, which we named the graph of polypeptide relationships (GPR). Since the network is extremely complicated for topological transitions, to obtain an in-depth understanding, only subgraphs composed of vital nodes of the GPR were analyzed. Such analysis of vital subgraphs of the GPR revealed a donut-shaped fingerprint. Utilization of this topological feature revealed the switch sites (where the beginning of exposure Of previously hidden "hot spots" of fibril-forming happens, in consequence a further opportunity for protein aggregation is Provided; 188-202) of the conformational conversion of the normal alpha-helix-rich prion protein PrPC to the beta-sheet-rich PrPSc that is thought to be responsible for a group of fatal neurodegenerative diseases, transmissible spongiform encephalopathies. Efforts in analyzing other proteins related to various conformational diseases are also introduced. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis addresses whether it is possible to build a robust memory device for quantum information. Many schemes for fault-tolerant quantum information processing have been developed so far, one of which, called topological quantum computation, makes use of degrees of freedom that are inherently insensitive to local errors. However, this scheme is not so reliable against thermal errors. Other fault-tolerant schemes achieve better reliability through active error correction, but incur a substantial overhead cost. Thus, it is of practical importance and theoretical interest to design and assess fault-tolerant schemes that work well at finite temperature without active error correction.

In this thesis, a three-dimensional gapped lattice spin model is found which demonstrates for the first time that a reliable quantum memory at finite temperature is possible, at least to some extent. When quantum information is encoded into a highly entangled ground state of this model and subjected to thermal errors, the errors remain easily correctable for a long time without any active intervention, because a macroscopic energy barrier keeps the errors well localized. As a result, stored quantum information can be retrieved faithfully for a memory time which grows exponentially with the square of the inverse temperature. In contrast, for previously known types of topological quantum storage in three or fewer spatial dimensions the memory time scales exponentially with the inverse temperature, rather than its square.

This spin model exhibits a previously unexpected topological quantum order, in which ground states are locally indistinguishable, pointlike excitations are immobile, and the immobility is not affected by small perturbations of the Hamiltonian. The degeneracy of the ground state, though also insensitive to perturbations, is a complicated number-theoretic function of the system size, and the system bifurcates into multiple noninteracting copies of itself under real-space renormalization group transformations. The degeneracy, the excitations, and the renormalization group flow can be analyzed using a framework that exploits the spin model's symmetry and some associated free resolutions of modules over polynomial algebras.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The topological phases of matter have been a major part of condensed matter physics research since the discovery of the quantum Hall effect in the 1980s. Recently, much of this research has focused on the study of systems of free fermions, such as the integer quantum Hall effect, quantum spin Hall effect, and topological insulator. Though these free fermion systems can play host to a variety of interesting phenomena, the physics of interacting topological phases is even richer. Unfortunately, there is a shortage of theoretical tools that can be used to approach interacting problems. In this thesis I will discuss progress in using two different numerical techniques to study topological phases.

Recently much research in topological phases has focused on phases made up of bosons. Unlike fermions, free bosons form a condensate and so interactions are vital if the bosons are to realize a topological phase. Since these phases are difficult to study, much of our understanding comes from exactly solvable models, such as Kitaev's toric code, as well as Levin-Wen and Walker-Wang models. We may want to study systems for which such exactly solvable models are not available. In this thesis I present a series of models which are not solvable exactly, but which can be studied in sign-free Monte Carlo simulations. The models work by binding charges to point topological defects. They can be used to realize bosonic interacting versions of the quantum Hall effect in 2D and topological insulator in 3D. Effective field theories of "integer" (non-fractionalized) versions of these phases were available in the literature, but our models also allow for the construction of fractional phases. We can measure a number of properties of the bulk and surface of these phases.

Few interacting topological phases have been realized experimentally, but there is one very important exception: the fractional quantum Hall effect (FQHE). Though the fractional quantum Hall effect we discovered over 30 years ago, it can still produce novel phenomena. Of much recent interest is the existence of non-Abelian anyons in FQHE systems. Though it is possible to construct wave functions that realize such particles, whether these wavefunctions are the ground state is a difficult quantitative question that must be answered numerically. In this thesis I describe progress using a density-matrix renormalization group algorithm to study a bilayer system thought to host non-Abelian anyons. We find phase diagrams in terms of experimentally relevant parameters, and also find evidence for a non-Abelian phase known as the "interlayer Pfaffian".

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Topological superconductors are particularly interesting in light of the active ongoing experimental efforts for realizing exotic physics such as Majorana zero modes. These systems have excitations with non-Abelian exchange statistics, which provides a path towards topological quantum information processing. Intrinsic topological superconductors are quite rare in nature. However, one can engineer topological superconductivity by inducing effective p-wave pairing in materials which can be grown in the laboratory. One possibility is to induce the proximity effect in topological insulators; another is to use hybrid structures of superconductors and semiconductors.

The proposal of interfacing s-wave superconductors with quantum spin Hall systems provides a promising route to engineered topological superconductivity. Given the exciting recent progress on the fabrication side, identifying experiments that definitively expose the topological superconducting phase (and clearly distinguish it from a trivial state) raises an increasingly important problem. With this goal in mind, we proposed a detection scheme to get an unambiguous signature of topological superconductivity, even in the presence of ordinarily detrimental effects such as thermal fluctuations and quasiparticle poisoning. We considered a Josephson junction built on top of a quantum spin Hall material. This system allows the proximity effect to turn edge states in effective topological superconductors. Such a setup is promising because experimentalists have demonstrated that supercurrents indeed flow through quantum spin Hall edges. To demonstrate the topological nature of the superconducting quantum spin Hall edges, theorists have proposed examining the periodicity of Josephson currents respect to the phase across a Josephson junction. The periodicity of tunneling currents of ground states in a topological superconductor Josephson junction is double that of a conventional Josephson junction. In practice, this modification of periodicity is extremely difficult to observe because noise sources, such as quasiparticle poisoning, wash out the signature of topological superconductors. For this reason, We propose a new, relatively simple DC measurement that can compellingly reveal topological superconductivity in such quantum spin Hall/superconductor heterostructures. More specifically, We develop a general framework for capturing the junction's current-voltage characteristics as a function of applied magnetic flux. Our analysis reveals sharp signatures of topological superconductivity in the field-dependent critical current. These signatures include the presence of multiple critical currents and a non-vanishing critical current for all magnetic field strengths as a reliable identification scheme for topological superconductivity.

This system becomes more interesting as interactions between electrons are involved. By modeling edge states as a Luttinger liquid, we find conductance provides universal signatures to distinguish between normal and topological superconductors. More specifically, we use renormalization group methods to extract universal transport characteristics of superconductor/quantum spin Hall heterostructures where the native edge states serve as a lead. Interestingly, arbitrarily weak interactions induce qualitative changes in the behavior relative to the free-fermion limit, leading to a sharp dichotomy in conductance for the trivial (narrow superconductor) and topological (wide superconductor) cases. Furthermore, we find that strong interactions can in principle induce parafermion excitations at a superconductor/quantum spin Hall junction.

As we identify the existence of topological superconductor, we can take a step further. One can use topological superconductor for realizing Majorana modes by breaking time reversal symmetry. An advantage of 2D topological insulator is that networks required for braiding Majoranas along the edge channels can be obtained by adjoining 2D topological insulator to form corner junctions. Physically cutting quantum wells for this purpose, however, presents technical challenges. For this reason, I propose a more accessible means of forming networks that rely on dynamically manipulating the location of edge states inside of a single 2D topological insulator sheet. In particular, I show that edge states can effectively be dragged into the system's interior by gating a region near the edge into a metallic regime and then removing the resulting gapless carriers via proximity-induced superconductivity. This method allows one to construct rather general quasi-1D networks along which Majorana modes can be exchanged by electrostatic means.

Apart from 2D topological insulators, Majorana fermions can also be generated in other more accessible materials such as semiconductors. Following up on a suggestion by experimentalist Charlie Marcus, I proposed a novel geometry to create Majorana fermions by placing a 2D electron gas in proximity to an interdigitated superconductor-ferromagnet structure. This architecture evades several manufacturing challenges by allowing single-side fabrication and widening the class of 2D electron gas that may be used, such as the surface states of bulk semiconductors. Furthermore, it naturally allows one to trap and manipulate Majorana fermions through the application of currents. Thus, this structure may lead to the development of a circuit that enables fully electrical manipulation of topologically-protected quantum memory. To reveal these exotic Majorana zero modes, I also proposed an interference scheme to detect Majorana fermions that is broadly applicable to any 2D topological superconductor platform.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is necessary to generate the automorphism group of a chemical graph in computer-aided structure elucidation. In this paper, an algorithm was developed by the all-paths topological symmetry algorithm to build the automorphism group of a chemical graph. A comparison of several topological symmetry algorithms reveals that the all-paths algorithm (APA) could yield the correct class of a chemical graph. It lays a foundation for the ESESOC system in computer-aided structure elucidation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is necessary to generate automorphism group of chemical graph in computer-aided structure eluciation. In this paper, an algorithm is developed by all-path topological symmetry algorithm to build automorphism group of chemical graph. A comparison of several topological symmetry algorithm reveals that all-path algorthm can yield correct of class of chemical graph. It lays a foundation for ESESOC system for computer-aided structure elucidation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Source: PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS Volume: 131 Pages: 1257-1273 Part: Part 6 Published: 2001 Times Cited: 5 References: 23 Citation MapCitation Map beta Abstract: We show that the Banach space M of regular sigma-additive finite Borel complex-valued measures on a non-discrete locally compact Hausdorff topological Abelian group is the direct sum of two linear closed subspaces M-D and M-ND, where M-D is the set of measures mu is an element of M whose Fourier transform vanishes at infinity and M-ND is the set of measures mu is an element of M such that nu is not an element of MD for any nu is an element of M \ {0} absolutely continuous with respect to the variation \mu\. For any corresponding decomposition mu = mu(D) + mu(ND) (mu(D) is an element of M-D and mu(ND) is an element of M-ND) there exist a Borel set A = A(mu) such that mu(D) is the restriction of mu to A, therefore the measures mu(D) and mu(ND) are singular with respect to each other. The measures mu(D) and mu(ND) are real if mu is real and positive if mu is positive. In the case of singular continuous measures we have a refinement of Jordan's decomposition theorem. We provide series of examples of different behaviour of convolutions of measures from M-D and M-ND.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this thesis we investigate some problems in set theoretical topology related to the concepts of the group of homeomorphisms and order. Many problems considered are directly or indirectly related to the concept of the group of homeomorphisms of a topological space onto itself. Order theoretic methods are used extensively. Chapter-l deals with the group of homeomorphisms. This concept has been investigated by several authors for many years from different angles. It was observed that nonhomeomorphic topological spaces can have isomorphic groups of homeomorphisms. Many problems relating the topological properties of a space and the algebraic properties of its group of homeomorphisms were investigated. The group of isomorphisms of several algebraic, geometric, order theoretic and topological structures had also been investigated. A related concept of the semigroup of continuous functions of a topological space also received attention

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Topological indices have been applied to build QSAR models for a set of 20 antimalarial cyclic peroxy cetals. In order to evaluate the reliability of the proposed linear models leave-n-out and Internal Test Sets (ITS) approaches have been considered. The proposed procedure resulted in a robust and consensued prediction equation and here it is shown why it is superior to the employed standard cross-validation algorithms involving multilinear regression models

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new silver-antimony sulphide, [C6H20N4][Ag5Sb3S8], has been synthesised solvothermally in the presence of triethylenetetramine and characterised by single-crystal X-ray diffraction, thermogravimetry and elemental analysis. The compound crystallises in the space group P2(1)/m (a = 6.2778(7), b = 15.8175(16) and c = 12.4617(15) angstrom and beta = 104.561(5)degrees) and adopts a structure in which honeycomb-like sheets of fused six-membered silver-antimony-sulphide rings are linked through Ag-S bonds to form double layers. The idealised structure can be considered to be derived from that of antifluorite and represents a second structure type for the [Ag5Sb3S8](2-) double layer. (c) 2005 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A classical theorem of H. Hopf asserts that a closed connected smooth manifold admits a nowhere vanishing vector field if and only if its Euler characteristic is zero. R. Brown generalized Hopf`s result to topological manifolds, replacing vector fields with path fields. In this note, we give an equivariant analog of Brown`s theorem for locally smooth G-manifolds where G is a finite group.