996 resultados para tip leakage flow


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The phenomenon of tip leakage has been studied in two linear cascades of turbine blades. The investigation includes an examination of the performance of the cascades with a variety of tip geometries. The effects of using plain tips, suction side squealers, and pressure side squealers are reported. Traverses of the exit flow field were made in order to determine the overall performance. A method of calculating the tip discharge coefficients for squealer geometries is put forward. In linking the tip discharge coefficient and cascade losses, a procedure for predicting the relative performance of tip geometries is developed. The model is used to examine the results obtained using the different tip treatments and to highlight the important aspects of the loss generation process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Most of the current understanding of tip leakage flows has been derived from detailed cascade experiments. However, the cascade model is inherently approximate since it is difficult to simulate the boundary conditions present in a real machine, particularly the secondary flows convecting from the upstream stator row and the relative motion of the casing and blade. This problem is further complicated when considering the high pressure turbine rotors of aero engines, where the high Mach numbers must also be matched in order to correctly model the aerodynamics and heat transfer. More realistic tests can be performed on high-speed turbines, but the experimental fidelity and resolution achievable in such set-ups is limited. In order to examine the differences between cascade models and real-engine behavior, the influence of boundary conditions on the tip leakage flow in an unshrouded high pressure turbine rotor is investigated using RANS calculations. This study examines the influence of the rotor inlet condition and relative casing motion. A baseline calculation with a simplified inlet condition and no relative endwall motion exhibits similar behavior to cascade studies. Only minor changes to the leakage flow are induced by introducing either a more realistic inlet condition or relative casing motion. However when both of these conditions are applied simultaneously the pattern of leakage flow is very different, with ingestion of flow over much of the early suction surface. The paper explores the physical processes driving this change and the impact on leakage losses and modeling requirements. Copyright © 2013 by ASME.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One of the most critical gas turbine engine components, the rotor blade tip and casing, is exposed to high thermal load. It becomes a significant design challenge to protect the turbine materials from this severe situation. The purpose of this paper is to study numerically the effect of turbine inlet temperature on the tip leakage flow structure and heat transfer. In this paper, the effect of turbine inlet temperature on the tip leakage flow structure and heat transfer has been studied numerically. Uniform low (LTIT: 444 K) and high (HTIT: 800 K) turbine inlet temperature, as well as non-uniform inlet temperature have been considered. The results showed the higher turbine inlet temperature yields the higher velocity and temperature variations in the leakage flow aerodynamics and heat transfer. For a given turbine geometry and on-design operating conditions, the turbine power output can be increased by 1.33 times, when the turbine inlet temperature increases 1.80 times. Whereas the averaged heat fluxes on the casing and the blade tip become 2.71 and 2.82 times larger, respectively. Therefore, about 2.8 times larger cooling capacity is required to keep the same turbine material temperature. Furthermore, the maximum heat flux on the blade tip of high turbine inlet temperature case reaches up to 3.348 times larger than that of LTIT case. The effect of the interaction of stator and rotor on heat transfer features is also explored using unsteady simulations. The non-uniform turbine inlet temperature enhances the heat flux fluctuation on the blade tip and casing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High thermal load appears at the blade tip and casing of a gas turbine engine. It becomes a significant design challenge to protect the turbine materials from this severe situation. As a result of geometric complexity and experimental limitations, computational fluid dynamics tools have been used to predict blade tip leakage flow aerodynamics and heat transfer at typical engine operating conditions. In this paper, the effect of turbine inlet temperature on the tip leakage flow structure and heat transfer has been studied numerically. Uniform low (444 K) and high (800 K) inlet temperatures and nonuniform (parabolic) temperature profiles have been considered at a fixed rotor rotation speed (9500 rpm). The results showed that the change of flow properties at a higher inlet temperature yields significant variations in the leakage flow aerodynamics and heat transfer relative to the lower inlet temperature condition. Aerodynamic behavior of the tip leakage flow varies significantly with the distortion of turbine inlet temperature. For more realistic inlet condition, the velocity range is insignificant at all the time instants. At a high inlet temperature, reverse secondary flow is strongly opposed by the tip leakage flow and the heat transfer fluctuations are reduced greatly.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Steady simulations were performed to investigate tip leakage flow and heat transfer characteristics on the rotor blade tip and casing in a single-stage gas turbine engine. A typical high-pressure gas turbine stage was modeled with a pressure ratio of 3.2. The predicted isentropic Mach number and adiabatic wall temperature on the casing showed good agreement with available experimental data under similar operating condition. The present numerical study focuses extensively on the effects of tip clearance heights and rotor rotational speeds on the blade tip and casing heat transfer characteristics. It was observed that the tip leakage flow structure is highly dependent on the height of the tip gap and the speed of the rotor. In all cases, the tip leakage flow was seen to separate and recirculate just around the corner of the pressure side of the blade tip. This region of re-circulating flow enlarges with increasing clearance heights. The separated leakage flow reattaches afterwards on the tip surface. Leakage flow reattachment was shown to enhance surface heat transfer at the tip. The interaction between tip leakage flow and secondary flows that is induced by the relative casing motion is found to significantly influence the blade tip and casing heat transfer distribution. A region of critical heat transfer exists on the casing near the blade tip leading edge and along the pressure-side edge for all the clearance heights that were investigated. At high rotation speed, the region of critical heat transfer tends to move towards the trailing edge due to the change in inflow angle.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Unsteady simulations were performed to investigate time dependent behaviors of the leakage flow structures and heat transfer on the rotor blade tip and casing in a single stage gas turbine engine. This paper mainly illustrates the unsteady nature of the leakage flow and heat transfer, particularly, that caused by the stator–rotor interactions. In order to obtain time-accurate results, the effects of varying the number of time steps, sub iterations, and the number of vane passing periods was firstly examined. The effect of tip clearance height and rotor speeds was also examined. The results showed periodic patterns of the tip leakage flow and heat transfer rate distribution for each vane passing. The relative position of the vane and vane trailing edge shock with respect to time alters the flow conditions in the rotor domain, and results in significant variations in the tip leakage flow structures and heat transfer rate distributions. It is observed that the trailing edge shock phenomenon results in a critical heat transfer region on the blade tip and casing. Consequently, the turbine blade tip and casing are subjected to large fluctuations of Nusselt number (about Nu = 2000 to 6000 and about Nu = 1000 to 10000, respectively) at a high frequency (coinciding with the rotor speed).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One of the most critical gas turbine engine components, rotor blade tip and casing, are exposed to high thermal load. It becomes a significant design challenge to protect the turbine materials from this severe situation. As a result of geometric complexity and experimental limitations, Computational Fluid Dynamics (CFD) tools have been used to predict blade tip leakage flow aerodynamics and heat transfer at typical engine operating conditions. In this paper, the effect of turbine inlet temperature on the tip leakage flow structure and heat transfer has been studied numerically. Uniform low (LTIT: 444 K) and high (HTIT: 800 K) turbine inlet temperature have been considered. The results showed the higher turbine inlet temperature yields the higher velocity and temperature variations in the leakage flow aerodynamics and heat transfer. For a given turbine geometry and on-design operating conditions, the turbine power output can be increased by 1.48 times, when the turbine inlet temperature increases 1.80 times. Whereas the averaged heat fluxes on the casing and the blade tip become 2.71 and 2.82 times larger, respectively. Therefore, about 2.8 times larger cooling capacity is required to keep the same turbine material temperature. Furthermore, the maximum heat flux on the blade tip of high turbine inlet temperature case reaches up to 3.348 times larger than that of LTIT case. The effect of the interaction of stator and rotor on heat transfer features is also explored using unsteady simulations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes an experimental investigation of tip clearance flow in a radial inflow turbine. Flow visualization and static pressure measurements were performed. These were combined with hot-wire traverses into the tip gap. The experimental data indicates that the tip clearance flow in a radial turbine can be divided into three regions. The first region is located at the rotor inlet, where the influence of relative casing motion dominates the flow over the tip. The second region is located towards midchord, where the effect of relative casing motion is weakened. Finally a third region exists in the exducer, where the effect of relative casing motion becomes small and the leakage flow resembles the tip flow behaviour in an axial turbine. Integration of the velocity profiles showed that there is little tip leakage in the first part of the rotor because of the effect of scraping. It was found that the bulk of tip leakage flow in a radial turbine passes through the exducer. The mass flow rate, measured at four chordwise positions, was compared with a standard axial turbine tip leakage model. The result revealed the need for a model suited to radial turbines. The hot-wire measurements also indicated a higher tip gap loss in the exducer of the radial turbine. This explains why the stage efficiency of a radial inflow turbine is more affected by increasing the radial clearance than by increasing the axial clearance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An unsteady numerical investigation was performed to examine time dependent behaviors of the tip leakage flow structures and heat transfer on the rotor blade tip and casing in a single stage gas turbine engine. A transonic, high-pressure
turbine stage was modeled and simulated using a stage pressure ratio of 3.2. The rotor’s tip clearance was 1.2 mm in height (3% of the rotor span) and its speed was set at 9500 rpm. Periodic flow is observed for each vane passing period. Tip leakage flow as well as heat transfer data showed highly time dependent behaviors. A stator trailing edge shock appears as the turbine stage is operating at transonic conditions. The shock alters the flow condition in the rotor section, namely, the tip leakage flow structures and heat transfer rate distributions. The instantaneous Nusselt number distributions are compared to the time averaged and steady-state results. The same patterns in tip leakage flow
structures and heat transfer rate distributions were observed in both unsteady and steady simulations. However, the unsteady simulation captured the locally time-dependent high heat transfer phenomena caused by the unsteady interaction with the upstream vane trailing-edge shock and the passing wake.

Relevância:

100.00% 100.00%

Publicador: