816 resultados para timber glulam basalt fibre
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Civil na Área de Especialização de Edificações
Resumo:
The objective of the present work was to evaluate Pinus’ glued laminated timber (glulam) beams and steel reinforced glulam beams, using PU mono-component adhesive in lamination step and epoxy adhesive to bond steel bars. The mechanical performance was verified through bending test, and the adopted method based on homogenized section, to considerate the differences between wood and steel mechanical properties. The homogenization section method proved itself effective in obtaining the stiffness of the parts in MLCA. The stiffness of reinforced beams increased 91% in comparison with glulam beams, differing only 5.5 % from value of stiffness calculated
Resumo:
En situación de incendio, los elementos estructurales de madera laminada encolada (?MLE?) sufren una degradación térmica que les lleva a una pérdida de sección portante. El Código Técnico de la Edificación cuantifica esta pérdida en 0,55 - 0,70 mm/min por cada cara sometida a carga, según especie y densidad, pero no propone una metodología específica para el cálculo de uniones carpinteras en situación de incendio. Para conocer el comportamiento de este tipo de uniones en situación de incendio, la Plataforma de Ingeniería de la Madera Estructural (PEMADE) de la Universidad de Santiago de Compostela, el Instituto de Ciencias de la Construcción Eduardo Torroja y el Centro Tecnológico CIDEMCO-Tecnalia han realizado conjuntamente una serie de ensayos experimentales sobre probetas ensambladas con unión carpintera del tipo cola de milano. Se han sometido las probetas a cargas térmicas variantes en el tiempo siguiendo la norma ISO 834-1, tal y como indica el CTE. Se registró usando termopares la variación de la temperatura a lo largo de la duración del ensayo. En este trabajo se expone en detalle la metodología desarrollada para realizar los ensayos, así como los primeros resultados obtenidos. In a fire event, glued laminated timber ("GLULAM") elements suffer a thermal degradation that produces in them a decrease of bearing section. Spanish technical building normative (?CTE?) quantify this decreasing from 0.55 to 0.70 mm / min according to species and density, but does not propose a specific methodology for calculating carpenter joints in a fire situation. In order to understand the behavior of such joints in a fire situation, the Platform for Structural Timber Engineering (PEMADE) of University of Santiago de Compostela; Institute of Science Construction Eduardo Torroja and Technology Center CIDEMCO-Tecnalia conducted together a series of experimental tests on glulam specimens assembled with a carpenter union type called ?dovetail?. Specimens were subjected to thermal loads varying in time according to ISO 834-1, as indicated by the CTE. Thermocouples were inserted in the specimens, recording the temperature variation along the length of the test. This paper details the methodology developed for the test and the first results.
Resumo:
Synopsis: Bonded-in rod timber joints off er several advantages over conventional types of joint, including high local force transfer, very stiff connections, and improved ?re and aesthetic properties since the connection is completely hidden in the insulating timber members. More recently, the use of ?bre reinforced polymer (FRP) as a connecting rod, alternative to steel rods, in bonded-in rod connections for timber structures has been investigated. However, the investigation into the behaviour of such joints is limited, in particular, connections involving basalt ?bre reinforced polymers (BFRP) bars - which is the primary focus of this research. This paper presents an experimental programme conducted to investigate the behaviour of bonded-in BFRP bars loaded parallel to the grain of glulam members. Tensile pull-out tests were conducted to examine the effect of bonded length and bond stress-slip on the structural capacity of the connection. An analytical design expression for predicting pull-out capacity is proposed and the results have been compared with some established design equations. It was found that pull-out load increased approximately linearly with the bonded length, up to maximum which occurred at a bonded length of 15 times the hole diameter, and did not increase beyond this bonded length. The most signi?cant failure modes were failure at the timber/adhesive interface followed by pullout of the BFRP rod. Increased bonded lengths resulted in higher bond slip values compared to lower equivalent bonded lengths. The proposed design model gave the best predictions of pull-out capacity compared with other existing models.
Resumo:
This paper describes a series of four-point bending tests that were conducted, under service loads and to failure, on unreinforced, reinforced and post-tensioned glulam timber beams, where the reinforcing tendon used was 12 mm diameter toughened steel bar. The research was designed to evaluate the benefits offered by including an active reinforcement in contrast to the passive reinforcement typically used within timber strengthening works, in addition to establishing the effect that bonding the reinforcing tendon has on the materials performance.
The laboratory investigations established that the flexural strength and stiffness increased for both the reinforced and post-tensioned timbers compared to the unreinforced beams. The flexural strength of the reinforced timber increased by 29.4%, while the stiffness increased by 28.1%. Timber that was post-tensioned with an unbonded steel tendon showed a flexural strength increase of 17.6% and an increase in stiffness of 8.1%. Post-tensioned beams with a bonded steel tendon showed increases in flexural strength and stiffness of 40.1% and 30% respectively.
Resumo:
Bonded-in rod connections in timber possess many desirable attributes in terms of efficiency, manufacture, performance, aesthetics and cost. In recent years research has been conducted on such connections using fibre reinforced polymers (FRPs) as an alternative to steel. This research programme investigates the pull-out capacity of Basalt FRP rods bonded-in in low grade Irish Sitka Spruce. Embedded length is thought to be the most influential variable contributing to pull- out capacity of bonded-in rods after rod diameter. Previous work has established an optimum embedded length of 15 times the hole diameter. However, this work only considered the effects of axial stress on the bond using a pull-compression testing system which may have given an artificially high pull out capacity as bending effects were neglected. A hinge system was utilised that allows the effects of bending force to be taken in to consideration along with axial forces in a pull-out test. This paper describes an experimental programme where such pull-bending tests were carried out on samples constructed of 12mm diameter BFRP bars with a 2mm glueline thickness and embedded lengths between 80mm and 280mm bonded-in to low-grade timber with an epoxy resin. Nine repetitions of each were tested. A clear increase in pull-out strength was found with increasing embedded length.
Resumo:
En el presente trabajo se lleva a cabo un estudio basado en datos obtenidos experimentalmente mediante el ensayo a flexión de vigas de madera de pino silvestre reforzadas con materiales compuestos. Las fibras que componen los tejidos utilizados para la ejecución de los refuerzos son de basalto y de carbono. En el caso de los compuestos de fibra de basalto se aplican en distintos gramajes, y los de carbono en tejido unidireccional y bidireccional. El material compuesto se realizó in situ, simultáneamente a la ejecución del refuerzo. Se aplicaron en una y en dos capas, según el caso, y la forma de colocación fue en ?U?, adhiriéndose al canto inferior y a las caras laterales de la viga mediante resina o mortero epoxi. Se analiza el comportamiento de las vigas según las variables de refuerzo aplicadas y se comparan con los resultados de vigas ensayadas sin reforzar. Con este trabajo queda demostrado el buen funcionamiento del FRP de fibra de basalto aplicado en el refuerzo de vigas de madera y de los tejidos de carbono bidireccionales con respecto a los unidireccionales.
Resumo:
This paper compares the structural performance between thin-walled timber and FRP-timber composite Cee-sections. While, thin-walled composite timber structures have been proven to be efficient and ultra-light structural elements, their manufacturing is difficult and labour intensive. Significant effort and time is required to prevent the cracking of the transverse timber veneers, bent in the grain direction, when forming the cross-sectional shape. FRP-timber structures overcome this disadvantage by replacing the transverse veneers with flexible, unidirectional FRP material and only keeping the timber veneers which are bent in their natural rolling direction. The Cee-sections investigated in this study were 210 mm deep × 90 mm wide × 500 mm high and manufactured from five plies. For both section types, the three internal plies were thin (1 mm thick) softwood Hoop pine (Araucaria cunninghamii) veneers, orientated along the section longitudinal axis. The two outer layers, providing bending stiffness to the walls, were Hoop pine veneers (1 mm thick) for the timber sections and glass fibre reinforced plastic (0.73 mm thick) for the FRP-timber sections orientated perpendicular to the inner layers. The manufacturing process is briefly introduced in this paper. The profiles were fitted with strain gauges and tested in compression. Linear Variable Displacement Transducers also recorded the buckling along one flange. The test results are presented and discussed in this paper in regards to their structural behaviour and performance. Results showed that the use of FRP in the sections increases both the elastic local buckling load and section capacity, the latter being increased by about 24 percent. The results indicate that thin-walled FRP-timber can ultimately be used as a sustainable alternative to cold-formed steel profiles.
Resumo:
Exposure trials on timber cladding are valuable for informing facade designers. This paper describes a trial using Sitka spruce (Picea sitchensis). Sitka spruce is the only UK-grown timber available in sufficient volume to supply the growing cladding market, but its suitability is unclear. Data indicated that the moisture content range in timber cladding was wider than generally accepted. The minimum of around 10% moisture content appeared to be similar for all details tested. The maximum was influenced by construction detailing but was around 30%. From a theoretical standpoint, the range, and rate, of moisture content fluctuation observed meant that the commonly quoted average value was largely irrelevant. The mode was a more representative statistic; most of the data were skewed towards the wood's fibre saturation point. Sitka spruce is, therefore, at risk of fungal decay and is only suitable as external cladding in the UK if treated with preservative
Resumo:
In order to increase the utilisation of Irish timber in construction and novel engineered wood products, the mechanical and physical properties of the material must be established. For timber products used for structural applications, the fundamental properties are the modulus of elasticity, bending strength, density and dimensional stability, as these define the structural grade of the material. In order to develop engineering design models for applications such as reinforced timber, knowledge of the nonlinear stress-strain behaviour in compression is also required.
The paper presents the programme and results of an ongoing research project ‘Innovation in Irish Timber Usage’ which focuses on the characterisation of Sitka spruce as it is the most widely grown species in Ireland. In the past, a number of studies have been conducted to determine the properties of Irish-grown Sitka spruce. Nevertheless, due to the changes that have taken place in silvicultural practices since the publication of these studies, there is a need to determine how these properties have changed. This paper presents the data gathered from historical studies together with the results of an extensive test programme undertaken to characterise the properties of the present resource.
Moreover, the study preliminary examines the potential use of Irish grown Sitka spruce in novel timber products. Construction applications, such as fibre-reinforced polymer reinforced timber elements and connections, and cross-laminated timber are investigated.
Resumo:
Timber engineering has advanced over recent decades to offer an alternative to traditional materials and methods. The bonding of fibre reinforced plastics (FRP) with adhesives to timber structures for repair and strengthening has many advantages. However, the lack of established design rules has strongly restrained the use of FRP strengthening in many situations, where these could be a preferable option to most traditional techniques. A significant body of research has been carried out in recent years on the performance of FRP reinforced timber and engineered wood products. This paper gives a State of the Art summary of material formulations, application areas, design approaches and quality control issues for practical engineers to introduce on-site bonding of FRP to timber as a new way in design for structural repair and rehabilitation.
Resumo:
In this project, Stora Enso’s newly developed building system has been further developed to allow building to the Swedish passive house standard for the Swedish climate. The building system is based on a building framework of CLT (Cross laminated timber) boards. The concept has been tested on a small test building. The experience gained from this test building has also been used for planning a larger building (two storeys with the option of a third storey) with passive house standard with this building system. The main conclusions from the project are: It is possible to build airtight buildings with this technique without using traditional vapour barriers. Initial measurements show that this can be done without reaching critical humidity levels in the walls and roof, at least where wood fibre insulation is used, as this has a greater capacity for storing and evening out the moisture than mineral wool. However, the test building has so far not been exposed to internal generation of moisture (added moisture from showers, food preparation etc.). This needs to be investigated and this will be done during the winter 2013-14. A new fixing method for doors and windows has been tested without traditional fibre filling between them and the CLT panel. The door or window is pressed directly on to the CLT panel instead, with an expandable sealing strip between them. This has been proved to be successful. The air tightness between the CLT panels is achieved with expandable sealing strips between the panels. The position of the sealing strips is important, both for the air tightness itself and to allow rational assembly. Recurrent air tightness measurements show that the air tightness decreased somewhat during the first six months, but not to such an extent that the passive house criteria were not fulfilled. The reason for the decreased air tightness is not clear, but can be due to small movements in the CLT construction and also to the sealing strips being affected by changing outdoor temperatures. Long term measurements (at least two years) have to be carried out before more reliable conclusions can be drawn regarding the long term effect of the construction on air tightness and humidity in the walls. An economic analysis comparing using a concrete frame or the studied CLT frame for a three storey building shows that it is probably more expensive to build with CLT. For buildings higher than three floors, the CLT frame has economic advantages, mainly because of the shorter building time compared to using concrete for the frame. In this analysis, no considerations have been taken to differences in the influence on the environment or the global climate between the two construction methods.
Resumo:
This work present a study of glulam beams reinforced with FRP. It was developed a theoretical model that calculates strength and stiffness of the beams. The model allows for the calculation of the bending moment, the hypothetical distribution of linear strains along the height of the beam, and considers the wood has a linear elastic fragile behavior in tension parallel to the fibers and bilinear in compression parallel to the fibers, initially elastic and subsequently inelastic, with a negative decline in the stress-strain diagram. The stiffness was calculated by the transformed section method. Twelve non-reinforced and fiberglass reinforced glulam beams were evaluated experimentally to validate the proposed theoretical model. The results obtained indicate good congruence between the experimental and theoretical values.
Resumo:
This study aimed to investigate the influence of storage time (0, 48 hours) of Pinus elliottii pieces and the tests to obtaining modulus of elasticity (static bending and transversal vibration) in glued laminated timber beams, produced with resorcinol based adhesive and 0.8 MPa compaction pressure. After pieces were properly prepared, part of them was used in immediate three manufacturing glulam beams, tested after adhesive cure, and part stored for 48 hours under a roof with a temperature of 25°C and relative humidity of 60% for subsequent manufacturing and testing three other glulam beams. Results of analysis of variance (ANOVA) revealed that the storage period was significant influence in modulus of elasticity obtained in static bending test (8% reduction from 0 to 48 hours). This not occurred with modulus of elasticity obtained by transversal vibration test (no significant influence). ANOVA results showed equivalence of means in both test procedures. New researches ire needed to better understand the investigated phenomenon, using new wood species, other storage conditions and a great number of samples.