953 resultados para tidal stream turbines
Resumo:
This paper presents analytical bounds for blade–wake interaction phenomenona occurring in rotating cross-flow turbines for wind and tidal energy generation (e.g. H rotors, Darrieus or vertical axis). Limiting cases are derived for one bladed turbines and extended to the more common three bladed configuration. Additionally, we present a classification of the blade–wake type of interactions in terms of limiting tip speed ratios. These bounds are validated using a high order h=p Discontinuous Galerkin solver with sliding meshes. This computational method enables highly accurate flow solutions and shows that the analytical bounds correspond to limiting blade-wake interactions in fully resolved flow simulations
Resumo:
The service of a critical infrastructure, such as a municipal wastewater treatment plant (MWWTP), is taken for granted until a flood or another low frequency, high consequence crisis brings its fragility to attention. The unique aspects of the MWWTP call for a method to quantify the flood stage-duration-frequency relationship. By developing a bivariate joint distribution model of flood stage and duration, this study adds a second dimension, time, into flood risk studies. A new parameter, inter-event time, is developed to further illustrate the effect of event separation on the frequency assessment. The method is tested on riverine, estuary and tidal sites in the Mid-Atlantic region. Equipment damage functions are characterized by linear and step damage models. The Expected Annual Damage (EAD) of the underground equipment is further estimated by the parametric joint distribution model, which is a function of both flood stage and duration, demonstrating the application of the bivariate model in risk assessment. Flood likelihood may alter due to climate change. A sensitivity analysis method is developed to assess future flood risk by estimating flood frequency under conditions of higher sea level and stream flow response to increased precipitation intensity. Scenarios based on steady and unsteady flow analysis are generated for current climate, future climate within this century, and future climate beyond this century, consistent with the WWTP planning horizons. The spatial extent of flood risk is visualized by inundation mapping and GIS-Assisted Risk Register (GARR). This research will help the stakeholders of the critical infrastructure be aware of the flood risk, vulnerability, and the inherent uncertainty.
Resumo:
Acid drainage influence on the water and sediment quality was investigated in a coal mining area (southern Brazil). Mine drainage showed pH between 3.2 and 4.6 and elevated concentrations of sulfate, As and metals, of which, Fe, Mn and Zn exceeded the limits for the emission of effluents stated in the Brazilian legislation. Arsenic also exceeded the limit, but only slightly. Groundwater monitoring wells from active mines and tailings piles showed pH interval and chemical concentrations similar to those of mine drainage. However, the river and ground water samples of municipal public water supplies revealed a pH range from 7.2 to 7.5 and low chemical concentrations, although Cd concentration slightly exceeded the limit adopted by Brazilian legislation for groundwater. In general, surface waters showed large pH range (6 to 10.8), and changes caused by acid drainage in the chemical composition of these waters were not very significant. Locally, acid drainage seemed to have dissolved carbonate rocks present in the local stratigraphic sequence, attenuating the dispersion of metals and As. Stream sediments presented anomalies of these elements, which were strongly dependent on the proximity of tailings piles and abandoned mines. We found that precipitation processes in sediments and the dilution of dissolved phases were responsible for the attenuation of the concentrations of the metals and As in the acid drainage and river water mixing zone. In general, a larger influence of mining activities on the chemical composition of the surface waters and sediments was observed when enrichment factors in relation to regional background levels were used.
Resumo:
Results obtained in a pilot-scale unit designed for COD removal and p-TBC (p-tert-butylcatechol) recovery from a butadiene washing stream (pH 14, 200,000 mg COD L-1, highly toxic) at a petrochemical industry are presented. By adding H3PO4, phase separation is achieved and p-TBC is successfully recovered (88 g L-1 of washing stream). Information (time for phase separation and organic phase characterization) was gathered for designing a future industrial unit. The estimated heat generation rate was 990 kJ min-1 and 15 min were enough to promote phase separation for a liquid column of approximately 1.15 m.
Resumo:
It is widely assumed that optimal timing of larval release is of major importance to offspring survival, but the extent to which environmental factors entrain synchronous reproductive rhythms in natural populations is not well known. We sampled the broods of ovigerous females of the common shore crab Pachygrapsus transversus at both sheltered and exposed rocky shores interspersed along a so-km coastline, during four different periods, to better assess inter-population differences of larval release timing and to test for the effect of wave action. Shore-specific patterns were consistent through time. Maximum release fell within 1 day around syzygies on all shores, which matched dates of maximum tidal amplitude. Within this very narrow range, populations at exposed shores anticipated hatching compared to those at sheltered areas, possibly due to mechanical stimulation by wave action. Average departures from syzygial release ranged consistently among shores from 2.4 to 3.3 days, but in this case we found no evidence for the effect of wave exposure. Therefore, processes varying at the scale of a few kilometres affect the precision of semilunar timing and may produce differences in the survival of recently hatched larvae. Understanding the underlying mechanisms causing departures from presumed optimal release timing is thus important for a more comprehensive evaluation of reproductive success of invertebrate populations.
Resumo:
Outgassing of carbon dioxide (CO(2)) from rivers and streams to the atmosphere is a major loss term in the coupled terrestrial-aquatic carbon cycle of major low-gradient river systems (the term ""river system"" encompasses the rivers and streams of all sizes that compose the drainage network in a river basin). However, the magnitude and controls on this important carbon flux are not well quantified. We measured carbon dioxide flux rates (F(CO2)), gas transfer velocity (k), and partial pressures (p(CO2)) in rivers and streams of the Amazon and Mekong river systems in South America and Southeast Asia, respectively. F(CO2) and k values were significantly higher in small rivers and streams (channels <100 m wide) than in large rivers (channels >100 m wide). Small rivers and streams also had substantially higher variability in k values than large rivers. Observed F(CO2) and k values suggest that previous estimates of basinwide CO(2) evasion from tropical rivers and wetlands have been conservative and are likely to be revised upward substantially in the future. Data from the present study combined with data compiled from the literature collectively suggest that the physical control of gas exchange velocities and fluxes in low-gradient river systems makes a transition from the dominance of wind control at the largest spatial scales (in estuaries and river mainstems) toward increasing importance of water current velocity and depth at progressively smaller channel dimensions upstream. These results highlight the importance of incorporating scale-appropriate k values into basinwide models of whole ecosystem carbon balance.
Resumo:
Human activities that modify land cover can alter the structure and biogeochemistry of small streams but these effects are poorly known over large regions of the humid tropics where rates of forest clearing are high. We examined how conversion of Amazon lowland tropical forest to cattle pasture influenced the physical and chemical structure, organic matter stocks and N cycling of small streams. We combined a regional ground survey of small streams with an intensive study of nutrient cycling using (15)N additions in three representative streams: a second-order forest stream, a second-order pasture stream and a third-order pasture stream. These three streams were within several km of each other and on similar soils. Replacement of forest with pasture decreased stream habitat complexity by changing streams from run and pool channels with forest leaf detritus (50% cover) to grass-filled (63% cover) channel with runs of slow-moving water. In the survey, pasture streams consistently had lower concentrations of dissolved oxygen and nitrate (NO(3) (-)) compared with similar-sized forest streams. Stable isotope additions revealed that second-order pasture stream had a shorter NH(4) (+) uptake length, higher uptake rates into organic matter components and a shorter (15)NH(4) (+) residence time than the second-order forest stream or the third-order pasture stream. Nitrification was significant in the forest stream (19% of the added (15)NH(4) (+)) but not in the second-order pasture (0%) or third-order (6%) pasture stream. The forest stream retained 7% of added (15)N in organic matter compartments and exported 53% ((15)NH(4) (+) = 34%; (15)NO(3) (-) = 19%). In contrast, the second-order pasture stream retained 75% of added (15)N, predominantly in grasses (69%) and exported only 4% as (15)NH(4) (+). The fate of tracer (15)N in the third-order pasture stream more closely resembled that in the forest stream, with 5% of added N retained and 26% exported ((15)NH(4) (+) = 9%; (15)NO(3) (-) = 6%). These findings indicate that the widespread infilling by grass in small streams in areas deforested for pasture greatly increases the retention of inorganic N in the first- and second-order streams, which make up roughly three-fourths of total stream channel length in Amazon basin watersheds. The importance of this phenomenon and its effect on N transport to larger rivers across the larger areas of the Amazon Basin will depend on better evaluation of both the extent and the scale at which stream infilling by grass occurs, but our analysis suggests the phenomenon is widespread.
Resumo:
This paper presents a robust voltage control scheme for fixed-speed wind generators using a static synchronous compensator (STATCOM) controller. To enable a linear and robust control framework with structured uncertainty, the overall system is represented by a linear part plus a nonlinear part that covers an operating range of interest required to ensure stability during severe low voltages. The proposed methodology is flexible and readily applicable to larger wind farms of different configurations. The performance of the control strategy is demonstrated on a two area test system. Large disturbance simulations demonstrate that the proposed controller enhances voltage stability as well as transient stability of induction generators during low voltage ride through (LVRT) transients and thus enhances the LVRT capability. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
In this paper, a novel adaptive strategy to obtain technically justified fault-ride-through requirements for wind turbines (WTs) is proposed. The main objective is to promote an effective integration of wind turbines into power systems with still low penetration levels of wind power based on technical and economical considerations. The level of requirement imposed by the strategy is increased stepwise over time, depending on system characteristics and on wind power penetration level. The idea behind is to introduce stringent requirements only when they are technically needed for a reliable and secure power system operation. Voltage stability support and fault-ride-through requirements are considered in the strategy. Simulations are based on the Chilean transmission network, a midsize isolated power system with still low penetration levels of wind power. Simulations include fixed speed induction generators and doubly fed induction generators. The effects on power system stability of the wind power injections, integrated into the network by adopting the adaptive strategy, are compared with the effects that have the same installed capacity of wind power but only considering WTs able to fulfill stringent requirements (fault-ride-through capability and support voltage stability). Based on simulations and international experience, technically justified requirements for the Chilean case are proposed.
Resumo:
A variable-density groundwater model is used to analyse the effects of tidal fluctuations on sea-water intrusion in an unconfined aquifer. It is shown that the tidal activity forces the sea-water to intrude further inland and it also creates a thicker interface than would occur without tidal effects. Moreover, the configuration of the interface is radically changed when the tidal fluctuations are included. This is because of the dramatic changes in the flow pattern and velocity of the groundwater near the shoreline. For aquifer depths much larger than tidal amplitudes, the tidal fluctuation does not have much effect on how far the sea-water intrudes into the aquifer; nevertheless, a significant change in the configuration of concentration contours because of the effect of tidal fluctuations is observed. This change is more noticeable at the top of the aquifer, near the water table, than at the bottom of the aquifer, and is caused by the infiltration of salt water into the top of the aquifer at higher tidal levels. A flatter beach slope, therefore, intensifies this phenomenon. The interface configurations do not change noticeably over the course of a tidal cycle. Neglecting tidal fluctuation effects results in an inaccurate evaluation of the water table elevation at the land end of the aquifer, although no distinguishable difference is seen between the water tables near the shoreline. Where the landward boundary condition is a constant head, the effects of tidal fluctuations on sea-water intrusion are more pronounced than for cases where the landward boundary condition is a specified flux. Also it is shown that the effects of tidal fluctuations are more significant for a sloping beach than for a vertical shoreline and the salt water intrudes further inland for the sloping case. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
Gauging data are available from numerous streams throughout Australia, and these data provide a basis for historical analysis of geomorphic change in stream channels in response to both natural phenomena and human activities. We present a simple method for analysis of these data, and a briefcase study of an application to channel change in the Tully River, in the humid tropics of north Queensland. The analysis suggests that this channel has narrowed and deepened, rather than aggraded: channel aggradation was expected, given the intensification of land use in the catchment, upstream of the gauging station. Limitations of the method relate to the time periods over which stream gauging occurred; the spatial patterns of stream gauging sites; the quality and consistency of data collection; and the availability of concurrent land-use histories on which to base the interpretation of the channel changes.
Resumo:
Previous studies on tidal dynamics of coastal aquifers have focussed on the inland propagation of oceanic tides in the cross-shore direction, a configuration that is essentially one-dimensional. Aquifers at natural coasts can also be influenced by tidal waves in nearby estuaries, resulting in a more complex behaviour of head fluctuations in the aquifers. We present an analytical solution to the two-dimensional depth-averaged groundwater flow equation for a semi-infinite aquifer subject to oscillating head conditions at the boundaries. The solution describes the tidal dynamics of a coastal aquifer that is adjacent to a cross-shore estuary. Both the effects of oceanic and estuarine tides on the aquifer are included in the solution. The analytical prediction of the head fluctuations is verified by comparison with numerical solutions computed using a standard finite-difference method. An essential feature of the present analytical solution is the interaction between the cross- and along-shore tidal waves in the aquifer area near the estuary's entry. As the distance from the estuary or coastline increases, the wave interaction is weakened and the aquifer response is reduced, respectively, to the one-dimensional solution for oceanic tides or the solution of Sun (Sun H. A two-dimensional analytical solution of groundwater response to tidal loading in an estuary, Water Resour Res 1997;33:1429-35) for two-dimensional non-interacting tidal waves. (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
Tidal fluctuations in a leaky confined coastal aquifer are damped significantly due to leakage into an overlying phreatic aquifer. Jiao and Tang [1999] presented an analytical solution to a simple model describing this phenomenon. Their solution assumes that the tidal fluctuations in the overlying phreatic aquifer are negligible (i.e,, a static phreatic aquifer), Here we examine dynamic effects of the overlying aquifer based on a new approximate analytical solution. The numerical results indicate that the dynamic effects can be significant for a relatively large leakage and a high transmissivity of the phreatic aquifer.